227 research outputs found

    Structural Surface Mapping for Shape Analysis

    Get PDF
    Natural surfaces are usually associated with feature graphs, such as the cortical surface with anatomical atlas structure. Such a feature graph subdivides the whole surface into meaningful sub-regions. Existing brain mapping and registration methods did not integrate anatomical atlas structures. As a result, with existing brain mappings, it is difficult to visualize and compare the atlas structures. And also existing brain registration methods can not guarantee the best possible alignment of the cortical regions which can help computing more accurate shape similarity metrics for neurodegenerative disease analysis, e.g., Alzheimer’s disease (AD) classification. Also, not much attention has been paid to tackle surface parameterization and registration with graph constraints in a rigorous way which have many applications in graphics, e.g., surface and image morphing. This dissertation explores structural mappings for shape analysis of surfaces using the feature graphs as constraints. (1) First, we propose structural brain mapping which maps the brain cortical surface onto a planar convex domain using Tutte embedding of a novel atlas graph and harmonic map with atlas graph constraints to facilitate visualization and comparison between the atlas structures. (2) Next, we propose a novel brain registration technique based on an intrinsic atlas-constrained harmonic map which provides the best possible alignment of the cortical regions. (3) After that, the proposed brain registration technique has been applied to compute shape similarity metrics for AD classification. (4) Finally, we propose techniques to compute intrinsic graph-constrained parameterization and registration for general genus-0 surfaces which have been used in surface and image morphing applications

    Courbure discrète : théorie et applications

    Get PDF
    International audienceThe present volume contains the proceedings of the 2013 Meeting on discrete curvature, held at CIRM, Luminy, France. The aim of this meeting was to bring together researchers from various backgrounds, ranging from mathematics to computer science, with a focus on both theory and applications. With 27 invited talks and 8 posters, the conference attracted 70 researchers from all over the world. The challenge of finding a common ground on the topic of discrete curvature was met with success, and these proceedings are a testimony of this wor

    Conformal Wasserstein distances: comparing surfaces in polynomial time

    Get PDF
    We present a constructive approach to surface comparison realizable by a polynomial-time algorithm. We determine the "similarity" of two given surfaces by solving a mass-transportation problem between their conformal densities. This mass transportation problem differs from the standard case in that we require the solution to be invariant under global M\"{o}bius transformations. We present in detail the case where the surfaces to compare are disk-like; we also sketch how the approach can be generalized to other types of surfaces.Comment: 23 pages, 3 figure

    Surface Comparison with Mass Transportation

    Full text link
    We use mass-transportation as a tool to compare surfaces (2-manifolds). In particular, we determine the "similarity" of two given surfaces by solving a mass-transportation problem between their conformal densities. This mass transportation problem differs from the standard case in that we require the solution to be invariant under global M\"obius transformations. Our approach provides a constructive way of defining a metric in the abstract space of simply-connected smooth surfaces with boundary (i.e. surfaces of disk-type); this metric can also be used to define meaningful intrinsic distances between pairs of "patches" in the two surfaces, which allows automatic alignment of the surfaces. We provide numerical experiments on "real-life" surfaces to demonstrate possible applications in natural sciences
    • …
    corecore