2,268 research outputs found

    Unmanned Aerial Vehicle (UAV) for monitoring soil erosion in Morocco

    Get PDF
    This article presents an environmental remote sensing application using a UAV that is specifically aimed at reducing the data gap between field scale and satellite scale in soil erosion monitoring in Morocco. A fixed-wing aircraft type Sirius I (MAVinci, Germany) equipped with a digital system camera (Panasonic) is employed. UAV surveys are conducted over different study sites with varying extents and flying heights in order to provide both very high resolution site-specific data and lower-resolution overviews, thus fully exploiting the large potential of the chosen UAV for multi-scale mapping purposes. Depending on the scale and area coverage, two different approaches for georeferencing are used, based on high-precision GCPs or the UAV’s log file with exterior orientation values respectively. The photogrammetric image processing enables the creation of Digital Terrain Models (DTMs) and ortho-image mosaics with very high resolution on a sub-decimetre level. The created data products were used for quantifying gully and badland erosion in 2D and 3D as well as for the analysis of the surrounding areas and landscape development for larger extents

    Geometric Correction in High Resolution Satellite Imagery using Mathematical Methods: A Case Study in Kiliyar Sub Basin

    Get PDF
    The number of high resolution space imagery have great interest in the photogrammetric and remote sensing communities. This imagery is considered as a basic information source for mapping with various applications in geomantic. By this hybrid both the projection model and polynomial model in geometric correction of satellite imagery, it needs to control points and standardisation data. In the geometric correction of the IRS P-5 LISS III imagery is required when ever the image is to be compared with existing maps or with other imagery. In this paper execute the composition of correction function using Ground Control Points. The results show eligibility of geometric correction of these models for selected imagery. An accuracy analysis is performed, with emphasis being laid on the number and location of Ground Control Points

    Drone-Based Identification of Erosive Processes in Open-Pit Mining Restored Areas

    Get PDF
    Altres ajuts: European Union LIFE20 PRE/IT/000007Unmanned Aerial Systems, or drones, are very helpful tools for managing open-pit mining operations and developing ecological restoration activities. This article presents a method for identifying water erosion processes in active quarries by means of drone imagery remote sensing, in the absence of pre-existing imagery or mapping for comparison. A Digital Elevation Model (DEM) with a spatial resolution (SR) >10 cm and an orthophoto with an SR >2.5 cm were generated from images captured with a drone and their subsequent photogrammetric processing. By using Geographical Information Systems tools to process the DEM, a detailed drainage network was obtained, the areas of detected water erosion were separated, and the watersheds in the gullies identified. Subsequently, an estimated DEM before the erosive processes was reconstructed by interpolating the gully ridges; this DEM serves as a reference for the relief before the erosion. To calculate the volume of eroded material, the DEM of Differences was calculated, which estimates the volume difference between the previously estimated DEM and the current DEM. Additionally, we calculated the material necessary for the geomorphological adaptation of the quarry and the slope map, which are two valuable factors closely related to the monitoring of erosive processes. The results obtained allowed us to identify the erosion factors quickly and accurately in this type of mining. In the case of water-filled quarries, it would be important to characterize the subsurface relief. Essentially, the presented method can be applied with affordable and non-invasive materials to create digital grid maps at 10 cm resolution, obtaining data ready for 3D metrics, being a very practical landscape modelling tool for characterizing the restoration evolution of open-pit mining spaces

    Cooperative Agricultural Operations of Aerial and Ground Unmanned Vehicles

    Get PDF
    Precision agriculture comprises a set of technologies that combines sensors, information systems, enhanced machinery, and informed management to optimize production by accounting for variability and uncertainties within agricultural systems. Autonomous ground and aerial vehicle can lead to favorable improvements in management by performing in-field tasks in a time-effective way. Greater benefits can be achieved by allowing cooperation and collaborative action among Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs). A multi-phase approach is here proposed, where each unmanned vehicle involved has been conceived and will be designed to implement innovative solutions for automated navigation and infield operations within a complex irregular and unstructured scenario as vineyards in sloped terrains
    • 

    corecore