27 research outputs found

    Variational tetrahedral meshing

    Get PDF
    In this paper, a novel Delaunay-based variational approach to isotropic tetrahedral meshing is presented. To achieve both robustness and efficiency, we minimize a simple mesh-dependent energy through global updates of both vertex positions and connectivity. As this energy is known to be the ∠1 distance between an isotropic quadratic function and its linear interpolation on the mesh, our minimization procedure generates well-shaped tetrahedra. Mesh design is controlled through a gradation smoothness parameter and selection of the desired number of vertices. We provide the foundations of our approach by explaining both the underlying variational principle and its geometric interpretation. We demonstrate the quality of the resulting meshes through a series of examples

    Medial Axis Approximation with Constrained Centroidal Voronoi Diagrams On Discrete Data

    Get PDF
    International audienceIn this paper, we present a novel method for me-dial axis approximation based on Constrained Centroidal Voronoi Diagram of discrete data (image, volume). The proposed approach is based on the shape boundary subsampling by a clustering approach which generates a Voronoi Diagram well suited for Medial Axis extraction. The resulting Voronoi Diagram is further filtered so as to capture the correct topology of the medial axis. The resulting medial axis appears largely invariant with respect to typical noise conditions in the discrete data. The method is tested on various synthetic as well as real images. We also show an application of the approximate medial axis to the sizing field for triangular and tetrahedral meshing

    An adaptive hierarchical approach to the extraction of high resolution medial surfaces

    Get PDF
    We introduce a novel algorithm for medial surfaces extraction that is based on the density-corrected Hamiltonian analysis. The approach extracts the skeleton directly from a triangulated mesh and adopts an adaptive octree-based approach in which only skeletal voxels are refined to a lower level of the hierarchy, resulting in robust and accurate skeletons at extremely high resolution. The quality of the extracted medial surfaces is confirmed by an extensive set of experiments

    Advanced Unstructured Grid Generation for Complex Aerodynamic Applications

    Get PDF
    A new approach for distribution of grid points on the surface and in the volume has been developed. In addition to the point and line sources of prior work, the new approach utilizes surface and volume sources for automatic curvature-based grid sizing and convenient point distribution in the volume. A new exponential growth function produces smoother and more efficient grids and provides superior control over distribution of grid points in the field. All types of sources support anisotropic grid stretching which not only improves the grid economy but also provides more accurate solutions for certain aerodynamic applications. The new approach does not require a three-dimensional background grid as in the previous methods. Instead, it makes use of an efficient bounding-box auxiliary medium for storing grid parameters defined by surface sources. The new approach is less memory-intensive and more efficient computationally. The grids generated with the new method either eliminate the need for adaptive grid refinement for certain class of problems or provide high quality initial grids that would enhance the performance of many adaptation methods

    A new approach to automatic and a priori mesh adaptation around circular holes for finite element analysis

    Get PDF
    Through our research on the integration of finite element analysis in the design and manufacturing process with CAD, we have proposed the concept of mesh pre-optimization. This concept consists in converting shape and analysis information in a size map (a mesh sizing function) with respect to various adaptation criteria (refining the mesh around geometric form features, minimizing the geometric discretization error, boundary conditions, etc.). This size map then represents a constraint that has to be respected by automatic mesh generation procedures. This paper introduces a new approach to automatic mesh adaptation around circular holes. This tool aims at optimizing, before any FEA, the mesh of a CAD model around circular holes. This approach, referred to as “a priori” mesh adaptation, should not be regarded as an alternative to adaptive a posteriori mesh refinement but as an efficient way to obtain reasonably accurate FEA results before a posteriori adaptation, which is particularly interesting when evaluating design scenarios. The approach is based on performing many offline FEA analyses on a reference case and deriving, from results and error distributions obtained, a relationship between mesh size and FEA error. This relationship can then be extended to target user specified FEA accuracy objectives in a priori mesh adaptation for any distribution of circular holes. The approach being purely heuristic, fulfilling FEA accuracy objectives, in all cases, cannot be theoretically guaranteed. However, results obtained using varying hole diameters and distributions in 2D show that this heuristic approach is reliable and useful. Preliminary results also show that extension of the method can be foreseen towards a priori mesh adaptation in 3D and mesh adaptation around other types of 2D features

    Compact union of disjoint boxes: An efficient decomposition model for binary volumes

    Get PDF
    This paper presents in detail the CompactUnion of Disjoint Boxes (CUDB), a decomposition modelfor binary volumes that has been recently but brieflyintroduced. This model is an improved version of aprevious model called Ordered Union of Disjoint Boxes(OUDB). We show here, several desirable features thatthis model has versus OUDB, such as less unitary basicelements (boxes) and thus, a better efficiency in someneighborhood operations. We present algorithms forconversion to and from other models, and for basiccomputations as area (2D) or volume (3D). We alsopresent an efficient algorithm for connected-componentlabeling (CCL) that does not follow the classical two-passstrategy. Finally we present an algorithm for collision (oradjacency) detection in static environments. We test theefficiency of CUDB versus existing models with severaldatasets.Peer ReviewedPostprint (published version

    Numerical modelling of additive manufacturing process for stainless steel tension testing samples

    Get PDF
    Nowadays additive manufacturing (AM) technologies including 3D printing grow rapidly and they are expected to replace conventional subtractive manufacturing technologies to some extents. During a selective laser melting (SLM) process as one of popular AM technologies for metals, large amount of heats is required to melt metal powders, and this leads to distortions and/or shrinkages of additively manufactured parts. It is useful to predict the 3D printed parts to control unwanted distortions and shrinkages before their 3D printing. This study develops a two-phase numerical modelling and simulation process of AM process for 17-4PH stainless steel and it considers the importance of post-processing and the need for calibration to achieve a high-quality printing at the end. By using this proposed AM modelling and simulation process, optimal process parameters, material properties, and topology can be obtained to ensure a part 3D printed successfully

    6th International Meshing Roundtable '97

    Full text link

    Contribution to structural parameters computation: volume models and methods

    Get PDF
    Bio-CAD and in-silico experimentation are getting a growing interest in biomedical applications where scientific data coming from real samples are used to compute structural parameters that allow to evaluate physical properties. Non-invasive imaging acquisition technologies such as CT, mCT or MRI, plus the constant growth of computer capabilities, allow the acquisition, processing and visualization of scientific data with increasing degree of complexity. Structural parameters computation is based on the existence of two phases (or spaces) in the sample: the solid, which may correspond to the bone or material, and the empty or porous phase and, therefore, they are represented as binary volumes. The most common representation model for these datasets is the voxel model, which is the natural extension to 3D of 2D bitmaps. In this thesis, the Extreme Vertices Model (EVM) and a new proposed model, the Compact Union of Disjoint Boxes (CUDB), are used to represent binary volumes in a much more compact way. EVM stores only a sorted subset of vertices of the object¿s boundary whereas CUDB keeps a compact list of boxes. In this thesis, methods to compute the next structural parameters are proposed: pore-size distribution, connectivity, orientation, sphericity and roundness. The pore-size distribution helps to interpret the characteristics of porous samples by allowing users to observe most common pore diameter ranges as peaks in a graph. Connectivity is a topological property related to the genus of the solid space, measures the level of interconnectivity among elements, and is an indicator of the biomechanical characteristics of bone or other materials. The orientation of a shape can be defined by rotation angles around a set of orthogonal axes. Sphericity is a measure of how spherical is a particle, whereas roundness is the measure of the sharpness of a particle's edges and corners. The study of these parameters requires dealing with real samples scanned at high resolution, which usually generate huge datasets that require a lot of memory and large processing time to analyze them. For this reason, a new method to simplify binary volumes in a progressive and lossless way is presented. This method generates a level-of-detail sequence of objects, where each object is a bounding volume of the previous objects. Besides being used as support in the structural parameter computation, this method can be practical for task such as progressive transmission, collision detection and volume of interest computation. As part of multidisciplinary research, two practical applications have been developed to compute structural parameters of real samples. A software for automatic detection of characteristic viscosity points of basalt rocks and glasses samples, and another to compute sphericity and roundness of complex forms in a silica dataset.El Bio-Diseño Asistido por Computadora (Bio-CAD), y la experimentacion in-silico est an teniendo un creciente interes en aplicaciones biomedicas, en donde se utilizan datos cientificos provenientes de muestras reales para calcular par ametros estructurales que permiten evaluar propiedades físicas. Las tecnologías de adquisicion de imagen no invasivas como la TC, TC o IRM, y el crecimiento constante de las prestaciones de las computadoras, permiten la adquisicion, procesamiento y visualizacion de datos científicos con creciente grado de complejidad. El calculo de parametros estructurales esta basado en la existencia de dos fases (o espacios) en la muestra: la solida, que puede corresponder al hueso o material, y la fase porosa o vacía, por tanto, tales muestras son representadas como volumenes binarios. El modelo de representacion mas comun para estos conjuntos de datos es el modelo de voxeles, el cual es una extension natural a 3D de los mapas de bits 2D. En esta tesis se utilizan el modelo Extreme Verrtices Model (EVM) y un nuevo modelo propuesto, the Compact Union of Disjoint Boxes (CUDB), para representar los volumenes binarios en una forma mucho mas compacta. El modelo EVM almacena solo un subconjunto ordenado de vertices de la frontera del objeto mientras que el modelo CUDB mantiene una lista compacta de cajas. En esta tesis se proponen metodos para calcular los siguientes parametros estructurales: distribucion del tamaño de los poros, conectividad, orientacion, esfericidad y redondez. La distribucion del tamaño de los poros ayuda a interpretar las características de las muestras porosas permitiendo a los usuarios observar los rangos de diametro mas comunes de los poros mediante picos en un grafica. La conectividad es una propiedad topologica relacionada con el genero del espacio solido, mide el nivel de interconectividad entre los elementos, y es un indicador de las características biomecanicas del hueso o de otros materiales. La orientacion de un objeto puede ser definida por medio de angulos de rotacion alrededor de un conjunto de ejes ortogonales. La esfericidad es una medida de que tan esferica es una partícula, mientras que la redondez es la medida de la nitidez de sus aristas y esquinas. En el estudio de estos parametros se trabaja con muestras reales escaneadas a alta resolucion que suelen generar conjuntos de datos enormes, los cuales requieren una gran cantidad de memoria y mucho tiempo de procesamiento para ser analizados. Por esta razon, se presenta un nuevo metodo para simpli car vol umenes binarios de una manera progresiva y sin perdidas. Este metodo genera una secuencia de niveles de detalle de los objetos, en donde cada objeto es un volumen englobante de los objetos previos. Ademas de ser utilizado como apoyo en el calculo de parametros estructurales, este metodo puede ser de utilizado en otras tareas como transmision progresiva, deteccion de colisiones y calculo de volumen de interes. Como parte de una investigacion multidisciplinaria, se han desarrollado dos aplicaciones practicas para calcular parametros estructurales de muestras reales. Un software para la deteccion automatica de puntos de viscosidad característicos en muestras de rocas de basalto y vidrios, y una aplicacion para calcular la esfericidad y redondez de formas complejas en un conjunto de datos de sílice
    corecore