794 research outputs found

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Multi-pooling 3D Convolutional Neural Network for fMRI Classification of Visual Brain States

    Full text link
    Neural decoding of visual object classification via functional magnetic resonance imaging (fMRI) data is challenging and is vital to understand underlying brain mechanisms. This paper proposed a multi-pooling 3D convolutional neural network (MP3DCNN) to improve fMRI classification accuracy. MP3DCNN is mainly composed of a three-layer 3DCNN, where the first and second layers of 3D convolutions each have a branch of pooling connection. The results showed that this model can improve the classification accuracy for categorical (face vs. object), face sub-categorical (male face vs. female face), and object sub-categorical (natural object vs. artificial object) classifications from 1.684% to 14.918% over the previous study in decoding brain mechanisms

    Towards Practical Application of Deep Learning in Diagnosis of Alzheimer's Disease

    Full text link
    Accurate diagnosis of Alzheimer's disease (AD) is both challenging and time consuming. With a systematic approach for early detection and diagnosis of AD, steps can be taken towards the treatment and prevention of the disease. This study explores the practical application of deep learning models for diagnosis of AD. Due to computational complexity, large training times and limited availability of labelled dataset, a 3D full brain CNN (convolutional neural network) is not commonly used, and researchers often prefer 2D CNN variants. In this study, full brain 3D version of well-known 2D CNNs were designed, trained and tested for diagnosis of various stages of AD. Deep learning approach shows good performance in differentiating various stages of AD for more than 1500 full brain volumes. Along with classification, the deep learning model is capable of extracting features which are key in differentiating the various categories. The extracted features align with meaningful anatomical landmarks, that are currently considered important in identification of AD by experts. An ensemble of all the algorithm was also tested and the performance of the ensemble algorithm was superior to any individual algorithm, further improving diagnosis ability. The 3D versions of the trained CNNs and their ensemble have the potential to be incorporated in software packages that can be used by physicians/radiologists to assist them in better diagnosis of AD.Comment: 18 pages, 8 figure
    • …
    corecore