1,540 research outputs found

    A Survey of 2D and 3D Shape Descriptors

    Get PDF

    Vibration-based damage identification in composite circular plates using polar discrete wavelet transform

    Get PDF
    Non-destructive damage identification is one of the most important problems in maintenance and reliability of composite structures. The methods applied for damage identification should be sensitive for external and internal damages and provide their precise localization. One of the promising methods for the damage identification is the wavelet transform applied to modal shapes of investigated objects. If the investigated object has circular geometry it is suitable to adapt the algorithm of damage identification to polar coordinate system. The paper presented an application of polar wavelet transform in order to detect and identify various types of damages occurred in composite structures with circular geometry. Several (external and internal) types of damages were considered in the presented study. Basing on comparative study the most adequate polar wavelets for damage identification problems were selected

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    Directional edge and texture representations for image processing

    Get PDF
    An efficient representation for natural images is of fundamental importance in image processing and analysis. The commonly used separable transforms such as wavelets axe not best suited for images due to their inability to exploit directional regularities such as edges and oriented textural patterns; while most of the recently proposed directional schemes cannot represent these two types of features in a unified transform. This thesis focuses on the development of directional representations for images which can capture both edges and textures in a multiresolution manner. The thesis first considers the problem of extracting linear features with the multiresolution Fourier transform (MFT). Based on a previous MFT-based linear feature model, the work extends the extraction method into the situation when the image is corrupted by noise. The problem is tackled by the combination of a "Signal+Noise" frequency model, a refinement stage and a robust classification scheme. As a result, the MFT is able to perform linear feature analysis on noisy images on which previous methods failed. A new set of transforms called the multiscale polar cosine transforms (MPCT) are also proposed in order to represent textures. The MPCT can be regarded as real-valued MFT with similar basis functions of oriented sinusoids. It is shown that the transform can represent textural patches more efficiently than the conventional Fourier basis. With a directional best cosine basis, the MPCT packet (MPCPT) is shown to be an efficient representation for edges and textures, despite its high computational burden. The problem of representing edges and textures in a fixed transform with less complexity is then considered. This is achieved by applying a Gaussian frequency filter, which matches the disperson of the magnitude spectrum, on the local MFT coefficients. This is particularly effective in denoising natural images, due to its ability to preserve both types of feature. Further improvements can be made by employing the information given by the linear feature extraction process in the filter's configuration. The denoising results compare favourably against other state-of-the-art directional representations

    Semantic Assisted, Multiresolution Image Retrieval in 3D Brain MR Volumes

    Get PDF
    Content Based Image Retrieval (CBIR) is an important research area in the field of multimedia information retrieval. The application of CBIR in the medical domain has been attempted before, however the use of CBIR in medical diagnostics is a daunting task. The goal of diagnostic medical image retrieval is to provide diagnostic support by displaying relevant past cases, along with proven pathologies as ground truths. Moreover, medical image retrieval can be extremely useful as a training tool for medical students and residents, follow-up studies, and for research purposes. Despite the presence of an impressive amount of research in the area of CBIR, its acceptance for mainstream and practical applications is quite limited. The research in CBIR has mostly been conducted as an academic pursuit, rather than for providing the solution to a need. For example, many researchers proposed CBIR systems where the image database consists of images belonging to a heterogeneous mixture of man-made objects and natural scenes while ignoring the practical uses of such systems. Furthermore, the intended use of CBIR systems is important in addressing the problem of "Semantic Gap". Indeed, the requirements for the semantics in an image retrieval system for pathological applications are quite different from those intended for training and education. Moreover, many researchers have underestimated the level of accuracy required for a useful and practical image retrieval system. The human eye is extremely dexterous and efficient in visual information processing; consequently, CBIR systems should be highly precise in image retrieval so as to be useful to human users. Unsurprisingly, due to these and other reasons, most of the proposed systems have not found useful real world applications. In this dissertation, an attempt is made to address the challenging problem of developing a retrieval system for medical diagnostics applications. More specifically, a system for semantic retrieval of Magnetic Resonance (MR) images in 3D brain volumes is proposed. The proposed retrieval system has a potential to be useful for clinical experts where the human eye may fail. Previously proposed systems used imprecise segmentation and feature extraction techniques, which are not suitable for precise matching requirements of the image retrieval in this application domain. This dissertation uses multiscale representation for image retrieval, which is robust against noise and MR inhomogeneity. In order to achieve a higher degree of accuracy in the presence of misalignments, an image registration based retrieval framework is developed. Additionally, to speed-up the retrieval system, a fast discrete wavelet based feature space is proposed. Further improvement in speed is achieved by semantically classifying of the human brain into various "Semantic Regions", using an SVM based machine learning approach. A novel and fast identification system is proposed for identifying a 3D volume given a 2D image slice. To this end, we used SVM output probabilities for ranking and identification of patient volumes. The proposed retrieval systems are tested not only for noise conditions but also for healthy and abnormal cases, resulting in promising retrieval performance with respect to multi-modality, accuracy, speed and robustness. This dissertation furnishes medical practitioners with a valuable set of tools for semantic retrieval of 2D images, where the human eye may fail. Specifically, the proposed retrieval algorithms provide medical practitioners with the ability to retrieve 2D MR brain images accurately and monitor the disease progression in various lobes of the human brain, with the capability to monitor the disease progression in multiple patients simultaneously. Additionally, the proposed semantic classification scheme can be extremely useful for semantic based categorization, clustering and annotation of images in MR brain databases. This research framework may evolve in a natural progression towards developing more powerful and robust retrieval systems. It also provides a foundation to researchers in semantic based retrieval systems on how to expand existing toolsets for solving retrieval problems

    Shape-based invariant features extraction for object recognition

    No full text
    International audienceThe emergence of new technologies enables generating large quantity of digital information including images; this leads to an increasing number of generated digital images. Therefore it appears a necessity for automatic systems for image retrieval. These systems consist of techniques used for query specification and re-trieval of images from an image collection. The most frequent and the most com-mon means for image retrieval is the indexing using textual keywords. But for some special application domains and face to the huge quantity of images, key-words are no more sufficient or unpractical. Moreover, images are rich in content; so in order to overcome these mentioned difficulties, some approaches are pro-posed based on visual features derived directly from the content of the image: these are the content-based image retrieval (CBIR) approaches. They allow users to search the desired image by specifying image queries: a query can be an exam-ple, a sketch or visual features (e.g., colour, texture and shape). Once the features have been defined and extracted, the retrieval becomes a task of measuring simi-larity between image features. An important property of these features is to be in-variant under various deformations that the observed image could undergo. In this chapter, we will present a number of existing methods for CBIR applica-tions. We will also describe some measures that are usually used for similarity measurement. At the end, and as an application example, we present a specific ap-proach, that we are developing, to illustrate the topic by providing experimental results

    Signal processing with Fourier analysis, novel algorithms and applications

    Get PDF
    Fourier analysis is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions, also analogously known as sinusoidal modeling. The original idea of Fourier had a profound impact on mathematical analysis, physics and engineering because it diagonalizes time-invariant convolution operators. In the past signal processing was a topic that stayed almost exclusively in electrical engineering, where only the experts could cancel noise, compress and reconstruct signals. Nowadays it is almost ubiquitous, as everyone now deals with modern digital signals. Medical imaging, wireless communications and power systems of the future will experience more data processing conditions and wider range of applications requirements than the systems of today. Such systems will require more powerful, efficient and flexible signal processing algorithms that are well designed to handle such needs. No matter how advanced our hardware technology becomes we will still need intelligent and efficient algorithms to address the growing demands in signal processing. In this thesis, we investigate novel techniques to solve a suite of four fundamental problems in signal processing that have a wide range of applications. The relevant equations, literature of signal processing applications, analysis and final numerical algorithms/methods to solve them using Fourier analysis are discussed for different applications in the electrical engineering/computer science. The first four chapters cover the following topics of central importance in the field of signal processing: • Fast Phasor Estimation using Adaptive Signal Processing (Chapter 2) • Frequency Estimation from Nonuniform Samples (Chapter 3) • 2D Polar and 3D Spherical Polar Nonuniform Discrete Fourier Transform (Chapter 4) • Robust 3D registration using Spherical Polar Discrete Fourier Transform and Spherical Harmonics (Chapter 5) Even though each of these four methods discussed may seem completely disparate, the underlying motivation for more efficient processing by exploiting the Fourier domain signal structure remains the same. The main contribution of this thesis is the innovation in the analysis, synthesis, discretization of certain well known problems like phasor estimation, frequency estimation, computations of a particular non-uniform Fourier transform and signal registration on the transformed domain. We conduct propositions and evaluations of certain applications relevant algorithms such as, frequency estimation algorithm using non-uniform sampling, polar and spherical polar Fourier transform. The techniques proposed are also useful in the field of computer vision and medical imaging. From a practical perspective, the proposed algorithms are shown to improve the existing solutions in the respective fields where they are applied/evaluated. The formulation and final proposition is shown to have a variety of benefits. Future work with potentials in medical imaging, directional wavelets, volume rendering, video/3D object classifications, high dimensional registration are also discussed in the final chapter. Finally, in the spirit of reproducible research we release the implementation of these algorithms to the public using Github
    • …
    corecore