14,545 research outputs found

    E-CURATOR: 3D COLOUR SCANS FOR OBJECT ASSESSMENT E-curator project team

    Get PDF
    This paper presents an overview about the E-curator project focussing specifically on the integration of user needs through the participatory user interface design process

    Facial Asymmetry Analysis Based on 3-D Dynamic Scans

    Get PDF
    Facial dysfunction is a fundamental symptom which often relates to many neurological illnesses, such as stroke, Bell’s palsy, Parkinson’s disease, etc. The current methods for detecting and assessing facial dysfunctions mainly rely on the trained practitioners which have significant limitations as they are often subjective. This paper presents a computer-based methodology of facial asymmetry analysis which aims for automatically detecting facial dysfunctions. The method is based on dynamic 3-D scans of human faces. The preliminary evaluation results testing on facial sequences from Hi4D-ADSIP database suggest that the proposed method is able to assist in the quantification and diagnosis of facial dysfunctions for neurological patients

    The virtual human face – superimposing the simultaneously captured 3D photorealistic skin surface of the face on the untextured skin image of the CBCT Scan

    Get PDF
    The aim of this study was to evaluate the impact of simultaneous capture of the three-dimensional (3D) surface of the face and cone beam computed tomography (CBCT) scan of the skull on the accuracy of their registration and superimposition. 3D facial images were acquired in 14 patients using the Di3d (Dimensional Imaging, UK) imaging system and i-CAT CBCT scanner. One stereophotogrammetry image was captured at the same time as the CBCT and another one hour later. The two stereophotographs were then individually superimposed over the CBCT using VRmesh. Seven patches were isolated on the final merged surfaces. For the whole face and each individual patch; maximum and minimum range of deviation between surfaces, absolute average distance between surfaces, and standard deviation for the 90th percentile of the distance errors were calculated. The superimposition errors of the whole face for both captures revealed statistically significant differences (P=0.00081). The absolute average distances in both separate and simultaneous captures were 0.47mm and 0.27mm, respectively. The level of superimposition accuracy in patches from separate captures ranged between 0.3 and 0.9mm, while that of simultaneous captures was 0.4mm. Simultaneous capture of Di3d and CBCT images significantly improved the accuracy of superimposition of these image modalities

    'Direct DICOM slice landmarking' a novel research technique to quantify skeletal changes in orthognathic surgery

    Get PDF
    The limitations of the current methods of quantifying the surgical movements of facial bones inspired this study. The aim of this study was the assessment of the accuracy and reproducibility of directly landmarking of 3D DICOM images (Digital Imaging and Communications in Medicine) to quantify the changes in the jaw bones following surgery. The study was carried out on plastic skull to simulate the surgical movements of the jaw bones. Cone beam CT scans were taken at 3mm, 6mm, and 9mm maxillary advancement; together with a 2mm, 4mm, 6mm and 8mm “down graft” which in total generated 12 different positions of the maxilla for the analysis. The movements of the maxilla were calculated using two methods, the standard approach where distances between surface landmarks on the jaw bones were measured and the novel approach where measurements were taken directly from the internal structures of the corresponding 3D DICOME slices. A one sample t-test showed that there was no statistically significant difference between the two methods of measurements for the y and z directions, however, the x direction showed a significant difference. The mean difference between the two absolute measurements were 0.34±0.20mm, 0.22±0.16mm, 0.18±0.13mm in the y, z and x directions respectively. In conclusion, the direct landmarking of 3D DICOM image slices is a reliable, reproducible and informative method for assessment of the 3D skeletal changes. The method has a clear clinical application which includes the analysis of the jaw movements “orthognathic surgery” for the correction of facial deformities

    Use of a Laser Scanning System for Professional Preparation and Scene Assessment of Fire Rescue Units

    Get PDF
    The paper presents results of a study focused on usability of a 3D laser scanning system by fire rescue units during emergencies, respectively during preparations for inspection and tactical exercises. The first part of the study focuses on an applicability of a 3D scanner in relation to an accurate evaluation of a fire scene through digitization and creation of virtual walk-through of the fire scene. The second part deals with detailed documentation of access road to the place of intervention, including a simulation of the fire vehicle arrival

    Toward automated earned value tracking using 3D imaging tools

    Get PDF

    Controlling Slab Flatness Automatically Using Laser Scanning and BIM

    Get PDF

    Potential of X-ray computed tomography for 3D anatomical analysis and microdensitometrical assessment in wood research with focus on wood modification

    Get PDF
    Studying structure and chemistry of wood and wood-based materials is the backbone of all wood research and many techniques are at hand to do so. A very valuable modality is X-ray computed tomography (CT), able to non-destructively probe the three-dimensional (3D) structure and composition. In this paper, we elaborate on the use of Nanowood, a flexible multi-resolution X-ray CT set-up developed at UGCT, the Ghent University Centre for X-ray Tomography. The technique has been used successfully in many different fields of wood science. It is illustrated how 3D structural and microdensitometrical data can be obtained using different scan set-ups and protocols. Its potential for the analysis of modified wood is exemplified, e.g. for the assessment of wood treated with hydrophobing agents, localisation of modification agents, pathway analysis related to functional tissues, dimensional changes due to thermal treatment, etc. Furthermore, monitoring of transient processes is a promising field of activity too

    3d modelling of archaeological small finds by a low-cost range camera. Methodology and first results

    Get PDF
    The production of reliable documentation of small finds is a crucial process during archaeological excavations. Range cameras can be a valid alternative to traditional illustration methods: they are veritable 3D scanners able to easily collect the 3D geometry (shape and dimensions in metric units) of an object/scene practically in real-time. This work investigates precisely the potentialities of a promising low-cost range camera, the Structure SensorTM by Occipital, for rapid modelling archaeological objects. The accuracy assessment was thus performed by comparing the 3D model of a Cipriot-Phoenician globular jug captured by this device with the 3D model of the same object obtained through photogrammetry. In general, the performed analysis shows that Structure Sensor is capable to acquire the 3D geometry of a small object with an accuracy comparable at millimeter level to that obtainable with the photogrammetric method, even though the finer details are not always correctly modelled. The texture reconstruction is instead less accurate. In the end, it can be concluded that the range camera used for this work, due to its low-cost and flexibility, is a suitable tool for the rapid documentation of archaeological small finds, especially when not expert users are involved
    corecore