156 research outputs found

    Investigation of Prediction Accuracy, Sensitivity, and Parameter Stability of Large-Scale Propagation Path Loss Models for 5G Wireless Communications

    Get PDF
    This paper compares three candidate large-scale propagation path loss models for use over the entire microwave and millimeter-wave (mmWave) radio spectrum: the alpha-beta-gamma (ABG) model, the close-in (CI) free space reference distance model, and the CI model with a frequency-weighted path loss exponent (CIF). Each of these models have been recently studied for use in standards bodies such as 3GPP, and for use in the design of fifth generation (5G) wireless systems in urban macrocell, urban microcell, and indoor office and shopping mall scenarios. Here we compare the accuracy and sensitivity of these models using measured data from 30 propagation measurement datasets from 2 GHz to 73 GHz over distances ranging from 4 m to 1238 m. A series of sensitivity analyses of the three models show that the physically-based two-parameter CI model and three-parameter CIF model offer computational simplicity, have very similar goodness of fit (i.e., the shadow fading standard deviation), exhibit more stable model parameter behavior across frequencies and distances, and yield smaller prediction error in sensitivity testing across distances and frequencies, when compared to the four-parameter ABG model. Results show the CI model with a 1 m close-in reference distance is suitable for outdoor environments, while the CIF model is more appropriate for indoor modeling. The CI and CIF models are easily implemented in existing 3GPP models by making a very subtle modification -- by replacing a floating non-physically based constant with a frequency-dependent constant that represents free space path loss in the first meter of propagation.Comment: Open access available at: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=743465

    Dual-polarized spatial-temporal propagation measurement and modeling in uma o2i scenario at 3.5 GHz

    Get PDF
    Outdoor-to-indoor (O2I) coverage in urban areas by using the sub-6 GHz (sub-6G) band is important in the fifth generation (5G) mobile communication system. The spatial-temporal propagation characteristics in different polarizations in the 5G spectrum are crucial for the network coverage. In this paper, we measured the urban macrocell (UMa) O2I channels at 3.5 GHz in the space, time, and polarization domains simultaneously. The channel sounder utilized two ±45° polarized antenna arrays. The transmitter (TX) was placed on the rooftop of a five-storey building to emulate a base station and the receiver (RX) was moved in the corridors on different floors in another building to emulate user equipments (UEs). We obtained the small-scale parameters of excess delay, power, and azimuth/elevation of arrival (AoA/EoA) of individual multipath components (MPCs), the propagation profiles of azimuth/elevation power spectrum (APS/EPS) and power delay profile (PDP), and the large-scale parameters including azimuth/elevation spread of arrival (ASA/ESA) and delay spread (DS). Based on the measurement results, we propose the lifted-superposed Laplace distribution (LS-Laplace) function and lifted-superposed normal distribution (LS-Normal) function to model the APS and EPS, respectively, and a three-phase model for the PDP. We find that the ASA and ESA follow the lognormal distribution and the DS has a Rayleigh distribution. We also reveal the impact of surrounding environments and polarization on the channel propagation profiles and statistical characteristics. The measurement results and channel models in this paper provide reference for the design and deployment of the 5G system to exploit the spatial and polarization diversities in the UMa O2I scenario.This work was supported in part by the National Natural Science Foundation of China under Grant 61571370, Grant 61601365, and Grant 61801388, in part by the Key Research Program and Industrial Innovation Chain Project of Shaanxi Province under Grant 2019ZDLGY07-10, Grant 2019JQ-253, and Grant 2019JM-345, and in part by the China Postdoctoral Science Foundation under Grant BX20180262, Grant BX20190287, Grant 2018M641020, and Grant 2018M641019.Scopu

    Reconfigurable antennas and radio wave propagation at millimeter-wave frequencies

    Get PDF
    For the last decades we have been witnessing the evolution of wireless radio networks. Since new devices appear and the mobile traffic, as well as the number of users, grows rapidly, there is a great demand in high capacity communications with better coverage, high transmission quality, and more efficient use of the radio spectrum. In this thesis, reconfigurable antennas at micro- and millimeter-wave frequencies and peculiar properties of radio wave propagation at mm-wave frequencies are studied. Reconfigurable antennas can improve radio link performance. Recently, many different concepts have been developed in the reconfigurable antenna design to control the antenna bandwidth, resonant frequency, polarization, and radiation properties. In the first part of the thesis, we investigate mechanically tunable antennas operating at microwave frequencies with the ability to change the shape of the conductor element and, consequently, to control the radiation properties of the antenna. Also in the first part, we study conformal antenna arraysfor 60 GHz applications based on cylindrical structures. Beam switching technology is implemented by realizing several antenna arrays around the cylinder with a switching network.Scanning angles of +34˚/-32˚ are achieved. Moreover, it is vital to study radio wave propagation peculiarities at mm-wave frequencies in indoor and outdoor environments to be able to deploy wireless networks effectively. The propagation part of the thesis focuses on several aspects. First, we investigate how the estimation of optimum antenna configurations in indoor environment can be done usingrealistic propagation models at 60 GHz. Ray tracing simulations are performed and realistic human blockage models are considered. Second, we present the results from a measurement campaign where reflection and scattering properties of two different built surfaces are studied in the millimeter-wave E-band (71-76 and 81-86 GHz). Next, we present a geometry based channel model for a street canyon scenario, using angular-domain measurement results to calculate realistic power angular spectra in the azimuth and elevation planes. Then, we evaluate propagation effects on the radio channel on the rooftop of the buildings bymeasurements and simulations. We have used unmanned aerial vehicles and photogrammetrytechnique to create a highly accurate 3D model of the environment. Based on a comparison of the measured and simulated power delay profiles, we show that the highly accurate 3D modelsare beneficial in radio wave propagation planning at mm-wave frequencies instead of using simple geometrical models

    Multi-band Wideband Channel Measurements in Indoor and Outdoor Environments above 6 GHz for 5G Networks

    Get PDF
    This document presented the results of ultra-wideband of multi-bands measurements performed in three different indoor environments such as large office, factory like and small office and one outdoor street canyon scenario at the science site of Durham University, United Kingdom. The measurements conducted using a wideband chirp sounder developed at Durham University. An analytical review of the radio wave propagation mechanisms and formulas is presented in addition to the background of the channel characteristics parameters and statistics. The parameters reviewed are the received signal strength, path loss, the excess, average and RMS delay spread, in addition to the angular parameters such as the angle of arrival (AoA), angle of departure (AoD) and the RMS angular spread. A literature survey for about 80 paper of the previous work are studied and summarised for the measurements and simulation performed to estimate different parameters in both indoor and outdoor scenarios. Two different measurements set up were performed in three indoor environments and one outdoor scenario to measure mainly, the frequency dependency in various channel characteristics parameters. In the first set the measured parameters are the received signal strength, path loss, and the excess, average and the cumulative distribution function (CDF) and the RMS delay spread in three indoor environments. While in the second set the 3D angular parameters such as AoA, AoD and RMS angular spread in both Tx and Rx sides are studied in three indoor and one outdoor environment mentioned earlier. The measurements set up and procedures are presented for each set of measurement. The measurements were performed using a wideband channel sounder up to 6 GHz for both sets. Five different frequency bands (i.e.13.4 GHz, 26.8 GHz, 54.2 GHz, 62.6 GHz and 70 GHz) were used in the first set and three bands (i.e.13.4 GHz, 26.8 GHz, 62.6 GHz) for the second set. A steerable horn antenna at both side using 3D positioner in the second set of measurements, while an omnidirectional antenna was used at the receiver side in the first set. A summary and discussion the extracted results for each set of measurements are given. Conclusions about the achieved results and the recommended future work are provided

    Characterization of vehicle penetration loss at wireless communication frequencies

    Get PDF
    Automotive window films are widely used for heat rejection, protection from ultraviolet radiations and glare control purposes. For an increased performance, these films are usually metallized since metals effectively reflect the impinging electromagnetic radiations. The expend of metallization in these films may affect the communication of radio signals into vehicles. In this perspective, the provision of reliable in-vehicle coverage is a major goal of both wireless network providers and automotive industry. In order to quantify the effects of automotive window films on communication signals inside a vehicle, this research study was undertaken with industrial cooperation. The thesis presents the characterization of Vehicle Penetration Loss (VPL) at major wireless communication frequencies based on empirical and numerical evaluation and by exploiting different window coatings including a commercially available automotive window film and Aluminium metal foil. The research involves ultra-wideband (UWB) car measurement campaign for the frequency range of 0.6-6.0 GHz in an indoor industrial environment at an isolated storage facility in Helsinki utilizing a regular sized hatchback car. Several realistic measurement scenarios were considered to obtain large measurement sets. The measurement data was post-processed using fine algorithms to exploit various channel characteristics to gain sufficient understanding of associated propagation phenomenon. Window films were also exclusively measured in a specialized environment to accurately assess the associated penetration loss. Apart from measurements, numerical analysis based on Finite-difference time-domain (FDTD) method for the assessment of VPL was carried out at discrete frequencies, 900 MHz and 1.2 GHz. The numerical approach can serve as a future alternate to measurements provided that adequate computational resources are available. The results infer that the use of metallized automotive films can severely affect the communication of radio signals into vehicles

    The characterisation and modelling of the wireless propagation channel in small cells scenarios

    Get PDF
    “A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of Philosophy”.The rapid growth in wireless data traffic in recent years has placed a great strain on the wireless spectrum and the capacity of current wireless networks. In addition, the makeup of the typical wireless propagation environment is rapidly changing as a greater percentage of data traffic moves indoors, where the coverage of radio signals is poor. This dual fronted assault on coverage and capacity has meant that the tradition cellular model is no longer sustainable, as the gains from constructing new macrocells falls short of the increasing cost. The key emerging concept that can solve the aforementioned challenges is smaller base stations such as micro-, pico- and femto-cells collectively known as small cells. However with this solution come new challenges: while small cells are efficient at improving the indoor coverage and capacity; they compound the lack of spectrum even more and cause high levels of interference. Current channel models are not suited to characterise this interference as the small cells propagation environment is vast different. The result is that overall efficiency of the networks suffers. This thesis presents an investigation into the characteristics of the wireless propagation channel in small cell environments, including measurement, analysis, modelling, validation and extraction of channel data. Two comprehensive data collection campaigns were carried out, one of them employed a RUSK channel sounder and featured dual-polarised MIMO antennas. From the first dataset an empirical path loss model, adapted to typical indoor and outdoor scenarios found in small cell environments, was constructed using regression analysis and was validated using the second dataset. The model shows good accuracy for small cell environments and can be implemented in system level simulations quickly without much requirements

    Evaluation of mmWave 5G Performance by Advanced Ray Tracing Techniques

    Get PDF
    Technological progress leads to the emergence of new concepts, which can change people’s everyday lives and accelerate the transformation of many industries. Among the more recent of these revolutionary concepts are big data analysis, artificial intelligence, augmented/virtual reality, quantum computing, and autonomous vehicles. However, this list would be incomplete without referring to fifth-generation (5G) technology, which is driven by several trends. First, the exponential growth of the worldwide monthly smartphone traffic up to 50 petabytes during the next three years will require the development of mobile networks supporting high datasharing capabilities, excellent spectral efficiency, and gigabits per second of throughput. Another trend is Industry 4.0/5.0 (also called the smart factory), which refers to advanced levels of automation requiring millions of distributed sensors/devices connected into a scalable and smart network. Finally, the automation of critical industrial processes, as well as communication between autonomous vehicles, will require 99.999% reliability and under 1 ms latency as they also become the drivers for the emergence of 5G. Besides traditional sub-6 GHz microwave spectrum, the 5G communication encompasses the novel millimeter-wave bands to mitigate spectrum scarcity and provide large bandwidth of up to several GHz. However, there are challenges to be overcome with the millimeter-wave band. The band suffers from higher pathloss, more atmospheric attenuation, and higher diffraction losses than microwave signals. Because the millimeter-wave band has such a small wavelength (< 1 cm), it is now feasible to implement compact antenna arrays. This enables the use of beamforming and multi-input and multi-output techniques. In this thesis, advanced ray tracing methodology is developed and utilized to simulate the propagation mechanisms and their effect on the system-level metrics. The main novelty of this work is in the introduction of typical millimeter-wave 5G technologies into channel modelling and propagation specifics into the system-level simulation, as well as the adaptation of the ray tracing methods to support extensive simulations with multiple antennas

    Wideband mobile propagation channels: Modelling measurements and characterisation for microcellular environments

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore