1,684 research outputs found

    Requirements for Topology in 3D GIS

    Get PDF
    Topology and its various benefits are well understood within the context of 2D Geographical Information Systems. However, requirements in three-dimensional (3D) applications have yet to be defined, with factors such as lack of users' familiarity with the potential of such systems impeding this process. In this paper, we identify and review a number of requirements for topology in 3D applications. The review utilises existing topological frameworks and data models as a starting point. Three key areas were studied for the purposes of requirements identification, namely existing 2D topological systems, requirements for visualisation in 3D and requirements for 3D analysis supported by topology. This was followed by analysis of application areas such as earth sciences and urban modelling which are traditionally associated with GIS, as well as others including medical, biological and chemical science. Requirements for topological functionality in 3D were then grouped and categorised. The paper concludes by suggesting that these requirements can be used as a basis for the implementation of topology in 3D. It is the aim of this review to serve as a focus for further discussion and identification of additional applications that would benefit from 3D topology. © 2006 The Authors. Journal compilation © 2006 Blackwell Publishing Ltd

    Three-Dimensional Information Retrieval (3DIR): exploiting 3D geometry and model topology in information retrieval from BIM environments

    Get PDF
    In building modelling environments, more and more information is being crammed into 2D/3D building and product models. This is particularly true given the rise of Building Information Modelling (BIM, Eastman et al., 2011). The Three-Dimensional Information Retrieval (3DIR) project investigates information retrieval from these environments, where information or documents are linked to a 3D building model. In these situations, the 3D visualization or 3D geometry of the building can be exploited when formulating information retrieval queries, computing the relevance of information items to the query, or visualizing search results. Managing such building information repositories in this way would take advantage of human strengths in vision, spatial cognition and visual memory (Lansdale and Edmonds, 1992; Robertson et al., 1998). Information retrieval is associated with documents, and a critic might argue that documents are relics from the pre-BIM age that are no longer relevant in the era of BIM. However, the challenge of information retrieval is pertinent whether we are dealing with documents which are coarse grains of information or building object parameters/attributes as finer grains of information. Demian and Fruchter (2005) demonstrated that traditional retrieval computations can be applied with good results to 3D building models where textual or symbolic data are treated as very short documents. In this sense, it is almost a question of semantics whether the information being retrieved comes from object properties embedded in the BIM, or from external documents linked to the BIM. The challenge remains of retrieving non-geometric or textual information. This paper describes the findings of the 3DIR project whose aim was to improve information retrieval when retrieving information or documents linked to a 3D artefact, or non-geometric information embedded in the model of the artefact. The central objective was to develop an information retrieval toolset for documents/information linked to 3D building models which exploits 3D geometry and model visualisation. Such a toolset is essentially a search engine for retrieving information with a BIM platform. As a further objective, the toolset should leverage topological relationships in the 3D model to enhance information retrieval

    THE IFC FILE FORMAT AS A MEANS OF INTEGRATING BIM AND GIS: THE CASE OF THE MANAGEMENT AND MAINTENANCE OF UNDERGROUND NETWORKS

    Get PDF
    Abstract. The construction sector is undergoing an important digital revolution. The integration between Building Information Modeling (BIM) and Geographical Information System (GIS) is a key component of this revolution and is increasingly discussed. Although benefits are already recognised, several challenges still remain. The purpose of this paper is to present the method proposed by the GEOBIMM project to overcome the existing barriers towards the integration between BIM and GIS domains and to present the first results applied to the maintenance of underground networks. The results are a set of guidelines essential for the integration of BIM files in GIS platforms within the GEOBIMM domain, to ensure: the appropriate geometric description of the elements; the correct georeferencing; the geospatial semantic and topological interoperability between the two systems; the appropriate definition of the information parameters. These pillars are further used to develop a guideline for planners and construction companies supporting them in developing compliant BIM models

    Spatial models for architectural heritage in urban database context

    Get PDF
    Despite the GIS (Geographic Information Systems/Geospatial Information Systems) have been provided with several applications to manage the two-dimensional geometric information and arrange the topological relations among different spatial primitives, most of these systems have limited capabilities to manage the three-dimensional space. Other tools, such as CAD systems, have already achieved a full capability of representing 3D data. Most of the researches in the field of GIS have underlined the necessity of a full 3D management capability which is not yet achieved by the available systems (Rahman, Pilouk 2008) (Zlatanova 2002). First of all to reach this goal is important to define the spatial data model, which is at the same time a geometric and topological model and so integrating these two aspects in relation to the database management efficiency and documentation purposes. The application field on which these model can be tested is the spatial data managing of Architectural Heritage documentation, to evaluate the pertinence of these spatial models to the requested scale for the needs of such a documentation. Most of the important aspects are the integration of metric data originated from different sources and the representation and management of multiscale data. The issues connected with the representation of objects at higher LOD than the ones defined by the CityGML will be taken into account. The aim of this paper is then to investigate which are the favorable application of a framework in order to integrate two different approaches: architectural heritage spatial documentation and urban scale spatial data management

    Three-dimensional information retrieval (3DIR): A graph theoretic formulation for exploiting 3D geometry and model topology in information retrieval

    Get PDF
    The 3DIR project investigated the use of 3D visualization to formulate queries, compute the relevance of information items, and visualize search results. Workshops identified the user needs. Based on these, a graph theoretic formulation was created to inform the emerging system architecture. A prototype was developed. This enabled relationships between 3D objects to be used to widen a search. An evaluation of the prototype demonstrated that a tight coupling between text-based retrieval and 3D models could enhance information retrieval but add an extra layer of complexity

    A REVIEW OF 3D GIS FOR USE IN CREATING VIRTUAL HISTORIC DUBLIN

    Get PDF
    This paper illustrates how BIM integration with GIS is approached as part of the workflow in creating Virtual Historic Dublin. A design for a WEB based interactive 3D model of historic buildings and centres in Dublin City (Virtual Historic Dublin City) paralleling smart city initiates is now under construction and led by the National Monuments at the Office of Public Works in Ireland. The aim is to facilitate the conservation and maintenance of historic infrastructure and fabric and the dissemination of knowledge for education and cultural tourism using an extensive Historic Building Information Model. Remote sensing data is now processed with greater ease to create 3D intelligent models in Historic BIM. While the use of remote sensing, HBIM and game engine platforms are the main applications used at present, 3D GIS has potential to form part of the workflow for developing the Virtual Historic City. 2D GIS is now being replaced by 3D spatial data allowing more complex analysis to be carried out, 3D GIS can define and depict buildings, urban rural centres in relation to their geometry topological, semantic and visualisation properties. The addition of semantic attributes allows complex analysis and 3D spatial queries for modelling city and urban elements. This analysis includes fabric and structural elements of buildings, relief, vegetation, transportation, water bodies, city furniture and land use
    • …
    corecore