294 research outputs found

    DRIMET: Deep Registration for 3D Incompressible Motion Estimation in Tagged-MRI with Application to the Tongue

    Full text link
    Tagged magnetic resonance imaging (MRI) has been used for decades to observe and quantify the detailed motion of deforming tissue. However, this technique faces several challenges such as tag fading, large motion, long computation times, and difficulties in obtaining diffeomorphic incompressible flow fields. To address these issues, this paper presents a novel unsupervised phase-based 3D motion estimation technique for tagged MRI. We introduce two key innovations. First, we apply a sinusoidal transformation to the harmonic phase input, which enables end-to-end training and avoids the need for phase interpolation. Second, we propose a Jacobian determinant-based learning objective to encourage incompressible flow fields for deforming biological tissues. Our method efficiently estimates 3D motion fields that are accurate, dense, and approximately diffeomorphic and incompressible. The efficacy of the method is assessed using human tongue motion during speech, and includes both healthy controls and patients that have undergone glossectomy. We show that the method outperforms existing approaches, and also exhibits improvements in speed, robustness to tag fading, and large tongue motion.Comment: Accepted to MIDL 2023 (full paper

    Synthesizing audio from tongue motion during speech using tagged MRI via transformer

    Full text link
    Investigating the relationship between internal tissue point motion of the tongue and oropharyngeal muscle deformation measured from tagged MRI and intelligible speech can aid in advancing speech motor control theories and developing novel treatment methods for speech related-disorders. However, elucidating the relationship between these two sources of information is challenging, due in part to the disparity in data structure between spatiotemporal motion fields (i.e., 4D motion fields) and one-dimensional audio waveforms. In this work, we present an efficient encoder-decoder translation network for exploring the predictive information inherent in 4D motion fields via 2D spectrograms as a surrogate of the audio data. Specifically, our encoder is based on 3D convolutional spatial modeling and transformer-based temporal modeling. The extracted features are processed by an asymmetric 2D convolution decoder to generate spectrograms that correspond to 4D motion fields. Furthermore, we incorporate a generative adversarial training approach into our framework to further improve synthesis quality on our generated spectrograms. We experiment on 63 paired motion field sequences and speech waveforms, demonstrating that our framework enables the generation of clear audio waveforms from a sequence of motion fields. Thus, our framework has the potential to improve our understanding of the relationship between these two modalities and inform the development of treatments for speech disorders.Comment: SPIE Medical Imaging: Deep Dive Ora

    Filter Design and Consistency Evaluation for 3D Tongue Motion Estimation using Harmonic Phase Analysis Method

    Get PDF
    Understanding patterns of tongue motion in speech using 3D motion estimation is challenging. Harmonic phase analysis has been used to perform noninvasive tongue motion and strain estimation using tagged magnetic resonance imaging (MRI). Two main contributions have been made in this thesis. First, the filtering process, which is used to produce harmonic phase images used for tissue tracking, influences the estimation accuracy. For this work, we evaluated different filtering approaches, and propose a novel high-pass filter for volumes tagged in individual directions. Testing was done using an open benchmarking dataset and synthetic images obtained using a mechanical model. Second, the datasets with inconsistent motion need to be excluded to yield meaningful motion estimation. For this work, we used a tracking-based method to evaluate the motion consistency between datasets and gave a strategy to identify the inconsistent dataset. Experiments including 2 normal subjects were done to validate our method. In all, the first work about 3D filter design improves the motion estimation accuracy and the second work about motion consistency test ensures the meaningfulness of the estimation results

    Three Dimensional Tissue Motion Analysis from Tagged Magnetic Resonance Imaging

    Get PDF
    Motion estimation of soft tissues during organ deformation has been an important topic in medical imaging studies. Its application involves a variety of internal and external organs including the heart, the lung, the brain, and the tongue. Tagged magnetic resonance imaging has been used for decades to observe and quantify motion and strain of deforming tissues. It places temporary noninvasive markers—so called "tags"—in the tissue of interest that deform together with the tissue during motion, producing images that carry motion information in the deformed tagged patterns. These images can later be processed using phase-extraction algorithms to achieve motion estimation and strain computation. In this dissertation, we study three-dimensional (3D) motion estimation and analysis using tagged magnetic resonance images with applications focused on speech studies and traumatic brain injury modeling. Novel algorithms are developed to assist tagged motion analysis. Firstly, a pipeline of methods—TMAP—is proposed to compute 3D motion from tagged and cine images of the tongue during speech. TMAP produces an estimation of motion along with a multi-subject analysis of motion pattern differences between healthy control subjects and post-glossectomy patients. Secondly, an enhanced 3D motion estimation algorithm—E-IDEA—is proposed. E-IDEA tackles the incompressible motion both on the internal tissue region and the tissue boundaries, reducing the boundary errors and yielding a motion estimate that is more accurate overall. Thirdly, a novel 3D motion estimation algorithm—PVIRA—is developed. Based on image registration and tracking, PVIRA is a faster and more robust method that performs phase extraction in a novel way. Lastly, a method to reveal muscles' activity using strain in the line of action of muscle fiber directions is presented. It is a first step toward relating motion production with individual muscles and provides a new tool for future clinical and scientific use

    ハツワ セイセイ キコウ ニオケル キノウテキ MRI ノ サツゾウ ギジュツ カイハツ ニカンスル ケンキュウ

    Full text link
    島田育廣. 発話生成機構における機能的MRIの撮像技術開発に関する研究. 日本放射線技術学会雑誌. 2008. 64(12). P.1504-1512

    Three-dimensional modeling of tongue during speech using MRI data

    Get PDF
    The tongue is the most important and dynamic articulator for speech formation, because of its anatomic aspects (particularly, the large volume of this muscular organ comparatively to the surrounding organs of the vocal tract) and also due to the wide range of movements and flexibility that are involved. In speech communication research, a variety of techniques have been used for measuring the three-dimensional vocal tract shapes. More recently, magnetic resonance imaging (MRI) becomes common; mainly, because this technique allows the collection of a set of static and dynamic images that can represent the entire vocal tract along any orientation. Over the years, different anatomical organs of the vocal tract have been modelled; namely, 2D and 3D tongue models, using parametric or statistical modelling procedures. Our aims are to present and describe some 3D reconstructed models from MRI data, for one subject uttering sustained articulations of some typical Portuguese sounds. Thus, we present a 3D database of the tongue obtained by stack combinations with the subject articulating Portuguese vowels. This 3D knowledge of the speech organs could be very important; especially, for clinical purposes (for example, for the assessment of articulatory impairments followed by tongue surgery in speech rehabilitation), and also for a better understanding of acoustic theory in speech formation

    Multimodal MRI analysis using deep learning methods

    Get PDF
    Magnetic resonance imaging (MRI) has been widely used in scientific and clinical research. It is a non-invasive medical imaging technique that reveals anatomical structures and provides useful information for investigators to explore aging and pathological processes. Different MR modalities offer different useful properties. Automatic MRI analysis algorithms have been developed to address problems in many applications such as classification, segmentation, and disease diagnosis. Segmentation and labeling algorithms applied to brain MRIs enable evaluations of the volumetric changes of specific structures in neurodegenerative diseases. Reconstruction of fiber orientations using diffusion MRI is beneficial to obtain better understanding of the underlying structures. In this thesis, we focused on development of deep learning methods for MRI analysis using different image modalities. Specifically, we applied deep learning techniques on different applications, including segmentation of brain structures and reconstruction of tongue muscle fiber orientations. For segmentation of brain structures, we developed an end-to-end deep learning algorithm for ventricle parcellation of brains with ventriculomegaly using T1-w MR images. The deep network provides robust and accurate segmentation results in subjects with high variability in ventricle shapes and sizes. We developed another deep learning method to automatically parcellate the thalamus into a set of thalamic nuclei using T1-w MRI and features from diffusion MRI. The algorithm incorporates a harmonization step to make the network adapt to input images with different contrasts. We also studied the strains associated with tongue muscles during speech production using multiple MRI modalities. To enable this study, we first developed a deep network to reconstruct crossing tongue muscle fiber orientations using diffusion MRI. The network was specifically designed for the human tongue and accounted for the orthogonality property of the tongue muscles. Next, we proposed a comprehensive pipeline to analyze the strains associated with tongue muscle fiber orientations during speech using diffusion MRI, and tagged and cine MRI. The proposed pipeline provides a solution to analyze the cooperation between muscle groups during speech production
    corecore