166,787 research outputs found

    Impact of Stratigraphic and Sedimentological Heterogeneity on Hydrocarbon Recovery in Carbonate Reservoirs

    Get PDF
    Imperial Users onl

    Reverse-engineering of architectural buildings based on an hybrid modeling approach

    Get PDF
    We thank MENSI and REALVIZ companies for their helpful comments and the following people for providing us images from their works: Francesca De Domenico (Fig. 1), Kyung-Tae Kim (Fig. 9). The CMN (French national center of patrimony buildings) is also acknowledged for the opportunity given to demonstrate our approach on the Hotel de Sully in Paris. We thank Tudor Driscu for his help on the English translation.This article presents a set of theoretical reflections and technical demonstrations that constitute a new methodological base for the architectural surveying and representation using computer graphics techniques. The problem we treated relates to three distinct concerns: the surveying of architectural objects, the construction and the semantic enrichment of their geometrical models, and their handling for the extraction of dimensional information. A hybrid approach to 3D reconstruction is described. This new approach combines range-based modeling and image-based modeling techniques; it integrates the concept of architectural feature-based modeling. To develop this concept set up a first process of extraction and formalization of architectural knowledge based on the analysis of architectural treaties is carried on. Then, the identified features are used to produce a template shape library. Finally the problem of the overall model structure and organization is addressed

    A discrete Reeb graph approach for the segmentation of human body scans

    Get PDF
    Segmentation of 3D human body (HB) scan is a very challenging problem in applications exploiting human scan data. To tackle this problem, we propose a topological approach based on discrete Reeb graph (DRG) which is an extension of the classical Reeb graph to unorganized cloud of 3D points. The essence of the approach is detecting critical nodes in the DRG thus permitting the extraction of branches that represent the body parts. Because the human body shape representation is built upon global topological features that are preserved so long as the whole structure of the human body does not change, our approach is quite robust against noise, holes, irregular sampling, moderate reference change and posture variation. Experimental results performed on real scan data demonstrate the validity of our method

    From Multiview Image Curves to 3D Drawings

    Full text link
    Reconstructing 3D scenes from multiple views has made impressive strides in recent years, chiefly by correlating isolated feature points, intensity patterns, or curvilinear structures. In the general setting - without controlled acquisition, abundant texture, curves and surfaces following specific models or limiting scene complexity - most methods produce unorganized point clouds, meshes, or voxel representations, with some exceptions producing unorganized clouds of 3D curve fragments. Ideally, many applications require structured representations of curves, surfaces and their spatial relationships. This paper presents a step in this direction by formulating an approach that combines 2D image curves into a collection of 3D curves, with topological connectivity between them represented as a 3D graph. This results in a 3D drawing, which is complementary to surface representations in the same sense as a 3D scaffold complements a tent taut over it. We evaluate our results against truth on synthetic and real datasets.Comment: Expanded ECCV 2016 version with tweaked figures and including an overview of the supplementary material available at multiview-3d-drawing.sourceforge.ne

    Comparison of simple mass estimators for slowly rotating elliptical galaxies

    Full text link
    We compare the performance of mass estimators for elliptical galaxies that rely on the directly observable surface brightness and velocity dispersion profiles, without invoking computationally expensive detailed modeling. These methods recover the mass at a specific radius where the mass estimate is expected to be least sensitive to the anisotropy of stellar orbits. One method (Wolf et al. 2010) uses the total luminosity-weighted velocity dispersion and evaluates the mass at a 3D half-light radius r1/2r_{1/2}, i.e., it depends on the GLOBAL galaxy properties. Another approach (Churazov et al. 2010) estimates the mass from the velocity dispersion at a radius R2R_2 where the surface brightness declines as R−2R^{-2}, i.e., it depends on the LOCAL properties. We evaluate the accuracy of the two methods for analytical models, simulated galaxies and real elliptical galaxies that have already been modeled by the Schwarzschild's orbit-superposition technique. Both estimators recover an almost unbiased circular speed estimate with a modest RMS scatter (â‰Č10%\lesssim 10 \%). Tests on analytical models and simulated galaxies indicate that the local estimator has a smaller RMS scatter than the global one. We show by examination of simulated galaxies that the projected velocity dispersion at R2R_2 could serve as a good proxy for the virial galaxy mass. For simulated galaxies the total halo mass scales with σp(R2)\sigma_p(R_2) as Mvir[M⊙h−1]≈6⋅1012(σp(R2)200 km s−1)4M_{vir} \left[M_{\odot}h^{-1}\right] \approx 6\cdot 10^{12} \left( \frac{\sigma_p(R_2)}{200\, \rm km\, s^{-1}} \right)^{4} with RMS scatter ≈40%\approx 40 \%.Comment: 19 pages, 14 figures, 4 tables, accepted for publication in MNRA

    A topological approach for segmenting human body shape

    Get PDF
    Segmentation of a 3D human body, is a very challenging problem in applications exploiting human scan data. To tackle this problem, the paper proposes a topological approach based on the discrete Reeb graph (DRG) which is an extension of the classical Reeb graph to handle unorganized clouds of 3D points. The essence of the approach concerns detecting critical nodes in the DRG, thereby permitting the extraction of branches that represent parts of the body. Because the human body shape representation is built upon global topological features that are preserved so long as the whole structure of the human body does not change, our approach is quite robust against noise, holes, irregular sampling, frame change and posture variation. Experimental results performed on real scan data demonstrate the validity of our method
    • 

    corecore