611 research outputs found

    3D Steerable Wavelets in Practice

    Full text link

    Localisation of directional scale-discretised wavelets on the sphere

    Get PDF
    Scale-discretised wavelets yield a directional wavelet framework on the sphere where a signal can be probed not only in scale and position but also in orientation. Furthermore, a signal can be synthesised from its wavelet coefficients exactly, in theory and practice (to machine precision). Scale-discretised wavelets are closely related to spherical needlets (both were developed independently at about the same time) but relax the axisymmetric property of needlets so that directional signal content can be probed. Needlets have been shown to satisfy important quasi-exponential localisation and asymptotic uncorrelation properties. We show that these properties also hold for directional scale-discretised wavelets on the sphere and derive similar localisation and uncorrelation bounds in both the scalar and spin settings. Scale-discretised wavelets can thus be considered as directional needlets.Comment: 28 pages, 8 figures, minor changes to match version accepted for publication by ACH

    Fast directional continuous spherical wavelet transform algorithms

    Full text link
    We describe the construction of a spherical wavelet analysis through the inverse stereographic projection of the Euclidean planar wavelet framework, introduced originally by Antoine and Vandergheynst and developed further by Wiaux et al. Fast algorithms for performing the directional continuous wavelet analysis on the unit sphere are presented. The fast directional algorithm, based on the fast spherical convolution algorithm developed by Wandelt and Gorski, provides a saving of O(sqrt(Npix)) over a direct quadrature implementation for Npix pixels on the sphere, and allows one to perform a directional spherical wavelet analysis of a 10^6 pixel map on a personal computer.Comment: 10 pages, 3 figures, replaced to match version accepted by IEEE Trans. Sig. Pro

    Standardised convolutional filtering for radiomics

    Full text link
    The Image Biomarker Standardisation Initiative (IBSI) aims to improve reproducibility of radiomics studies by standardising the computational process of extracting image biomarkers (features) from images. We have previously established reference values for 169 commonly used features, created a standard radiomics image processing scheme, and developed reporting guidelines for radiomic studies. However, several aspects are not standardised. Here we present a preliminary version of a reference manual on the use of convolutional image filters in radiomics. Filters, such as wavelets or Laplacian of Gaussian filters, play an important part in emphasising specific image characteristics such as edges and blobs. Features derived from filter response maps have been found to be poorly reproducible. This reference manual forms the basis of ongoing work on standardising convolutional filters in radiomics, and will be updated as this work progresses.Comment: 62 pages. For additional information see https://theibsi.github.io

    Scale-discretised ridgelet transform on the sphere

    Get PDF
    We revisit the spherical Radon transform, also called the Funk-Radon transform, viewing it as an axisymmetric convolution on the sphere. Viewing the spherical Radon transform in this manner leads to a straightforward derivation of its spherical harmonic representation, from which we show the spherical Radon transform can be inverted exactly for signals exhibiting antipodal symmetry. We then construct a spherical ridgelet transform by composing the spherical Radon and scale-discretised wavelet transforms on the sphere. The resulting spherical ridgelet transform also admits exact inversion for antipodal signals. The restriction to antipodal signals is expected since the spherical Radon and ridgelet transforms themselves result in signals that exhibit antipodal symmetry. Our ridgelet transform is defined natively on the sphere, probes signal content globally along great circles, does not exhibit blocking artefacts, supports spin signals and exhibits an exact and explicit inverse transform. No alternative ridgelet construction on the sphere satisfies all of these properties. Our implementation of the spherical Radon and ridgelet transforms is made publicly available. Finally, we illustrate the effectiveness of spherical ridgelets for diffusion magnetic resonance imaging of white matter fibers in the brain.Comment: 5 pages, 4 figures, matches version accepted by EUSIPCO, code available at http://www.s2let.or
    corecore