577 research outputs found

    Landmark Visualization on Mobile Maps – Effects on Visual Attention, Spatial Learning, and Cognitive Load during Map-Aided Real-World Navigation of Pedestrians

    Full text link
    Even though they are day-to-day activities, humans find navigation and wayfinding to be cognitively challenging. To facilitate their everyday mobility, humans increasingly rely on ubiquitous mobile maps as navigation aids. However, the over-reliance on and habitual use of omnipresent navigation aids deteriorate humans' short-term ability to learn new information about their surroundings and induces a long-term decline in spatial skills. This deterioration in spatial learning is attributed to the fact that these aids capture users' attention and cause them to enter a passive navigation mode. Another factor that limits spatial learning during map-aided navigation is the lack of salient landmark information on mobile maps. Prior research has already demonstrated that wayfinders rely on landmarks—geographic features that stand out from their surroundings—to facilitate navigation and build a spatial representation of the environments they traverse. Landmarks serve as anchor points and help wayfinders to visually match the spatial information depicted on the mobile map with the information collected during the active exploration of the environment. Considering the acknowledged significance of landmarks for human wayfinding due to their visibility and saliency, this thesis investigates an open research question: how to graphically communicate landmarks on mobile map aids to cue wayfinders' allocation of attentional resources to these task-relevant environmental features. From a cartographic design perspective, landmarks can be depicted on mobile map aids on a graphical continuum ranging from abstract 2D text labels to realistic 3D buildings with high visual fidelity. Based on the importance of landmarks for human wayfinding and the rich cartographic body of research concerning their depiction on mobile maps, this thesis investigated how various landmark visualization styles affect the navigation process of two user groups (expert and general wayfinders) in different navigation use contexts (emergency and general navigation tasks). Specifically, I conducted two real-world map-aided navigation studies to assess the influence of various landmark visualization styles on wayfinders' navigation performance, spatial learning, allocation of visual attention, and cognitive load. In Study I, I investigated how depicting landmarks as abstract 2D building footprints or realistic 3D buildings on the mobile map affected expert wayfinders' navigation performance, visual attention, spatial learning, and cognitive load during an emergency navigation task. I asked expert navigators recruited from the Swiss Armed Forces to follow a predefined route using a mobile map depicting landmarks as either abstract 2D building footprints or realistic 3D buildings and to identify the depicted task-relevant landmarks in the environment. I recorded the experts' gaze behavior with a mobile eye-tracer and their cognitive load with EEG during the navigation task, and I captured their incidental spatial learning at the end of the task. The wayfinding experts' exhibited high navigation performance and low cognitive load during the map-aided navigation task regardless of the landmark visualization style. Their gaze behavior revealed that wayfinding experts navigating with realistic 3D landmarks focused more on the visualizations of landmarks on the mobile map than those who navigated with abstract 2D landmarks, while the latter focused more on the depicted route. Furthermore, when the experts focused for longer on the environment and the landmarks, their spatial learning improved regardless of the landmark visualization style. I also found that the spatial learning of experts with self-reported low spatial abilities improved when they navigated with landmarks depicted as realistic 3D buildings. In Study II, I investigated the influence of abstract and realistic 3D landmark visualization styles on wayfinders sampled from the general population. As in Study I, I investigated wayfinders' navigation performance, visual attention, spatial learning, and cognitive load. In contrast to Study I, the participants in Study II were exposed to both landmark visualization styles in a navigation context that mimics everyday navigation. Furthermore, the participants were informed that their spatial knowledge of the environment would be tested after navigation. As in Study I, the wayfinders in Study II exhibited high navigation performance and low cognitive load regardless of the landmark visualization style. Their visual attention revealed that wayfinders with low spatial abilities and wayfinders familiar with the study area fixated on the environment longer when they navigated with realistic 3D landmarks on the mobile map. Spatial learning improved when wayfinders with low spatial abilities were assisted by realistic 3D landmarks. Also, when wayfinders were assisted by realistic 3D landmarks and paid less attention to the map aid, their spatial learning improved. Taken together, the present real-world navigation studies provide ecologically valid results on the influence of various landmark visualization styles on wayfinders. In particular, the studies demonstrate how visualization style modulates wayfinders' visual attention and facilitates spatial learning across various user groups and navigation use contexts. Furthermore, the results of both studies highlight the importance of individual differences in spatial abilities as predictors of spatial learning during map-assisted navigation. Based on these findings, the present work provides design recommendations for future mobile maps that go beyond the traditional concept of "one fits all." Indeed, the studies support the cause for landmark depiction that directs individual wayfinders' visual attention to task-relevant landmarks to further enhance spatial learning. This would be especially helpful for users with low spatial skills. In doing so, future mobile maps could dynamically adapt the visualization style of landmarks according to wayfinders' spatial abilities for cued visual attention, thus meeting individuals' spatial learning needs

    Seamless pedestrian positioning and navigation using landmarks

    Get PDF
    Many navigation services, such as car navigation services, provide users with praxic navigational instructions (such as “turn left after 200 metres, then turn right after 150 metres”), however people usually associate directions with visual cues (e.g. “turn right at the square”) when giving navigational instructions in their daily conversations. Landmarks can play an equally important role in navigation and routing services. Landmarks are unique and easy-to-recognise and remember features; therefore, in order to remember when exploring an unfamiliar environment, they would be assets. In addition, Landmarks can be found both indoors and outdoors and their locations are usually fixed. Any positioning techniques which use landmarks as reference points can potentially provide seamless (indoor and outdoor) positioning solutions. For example, users can be localised with respect to landmarks if they can take a photograph of a registered landmark and use an application for image processing and feature extraction to identify the landmark and its location. Landmarks can also be used in pedestrian-specific path finding services. Landmarks can be considered as an important parameter in a path finding algorithm to calculate a route passing more landmarks (to make the user visit a more tourist-focussed area, pass along an easier-to-follow route, etc.). Landmarks can also be used as a part of the navigational instructions provided to users; a landmark-based navigation service makes users sure that they are on the correct route, as the user is reassured by seeing the landmark whose information/picture has just been provided as a part of navigational instruction. This paper shows how landmarks can help improve positioning and praxic navigational instructions in all these ways

    On the assessment of landmark salience for human navigation

    Get PDF
    In this paper, we propose a conceptual framework for assessing the salience of landmarks for navigation. Landmark salience is derived as a result of the observer's point of view, both physical and cognitive, the surrounding environment, and the objects contained therein. This is in contrast to the currently held view that salience is an inherent property of some spatial feature. Salience, in our approach, is expressed as a three-valued Saliency Vector. The components that determine this vector are Perceptual Salience, which defines the exogenous (or passive) potential of an object or region for acquisition of visual attention, Cognitive Salience, which is an endogenous (or active) mode of orienting attention, triggered by informative cues providing advance information about the target location, and Contextual Salience, which is tightly coupled to modality and task to be performed. This separation between voluntary and involuntary direction of visual attention in dependence of the context allows defining a framework that accounts for the interaction between observer, environment, and landmark. We identify the low-level factors that contribute to each type of salience and suggest a probabilistic approach for their integration. Finally, we discuss the implications, consider restrictions, and explore the scope of the framewor

    A Conceptual Model of Exploration Wayfinding: An Integrated Theoretical Framework and Computational Methodology

    Get PDF
    This thesis is an attempt to integrate contending cognitive approaches to modeling wayfinding behavior. The primary goal is to create a plausible model for exploration tasks within indoor environments. This conceptual model can be extended for practical applications in the design, planning, and Social sciences. Using empirical evidence a cognitive schema is designed that accounts for perceptual and behavioral preferences in pedestrian navigation. Using this created schema, as a guiding framework, the use of network analysis and space syntax act as a computational methods to simulate human exploration wayfinding in unfamiliar indoor environments. The conceptual model provided is then implemented in two ways. First of which is by updating an existing agent-based modeling software directly. The second means of deploying the model is using a spatial interaction model that distributed visual attraction and movement permeability across a graph-representation of building floor plans

    How does the design of landmarks on a mobile map influence wayfinding experts’ spatial learning during a real-world navigation task?

    Full text link
    Humans increasingly rely on GPS-enabled mobile maps to navigate novel environments. However, this reliance can negatively affect spatial learning, which can be detrimental even for expert navigators such as search and rescue personnel. Landmark visualization has been shown to improve spatial learning in general populations by facilitating object identification between the map and the environment. How landmark visualization supports expert users’ spatial learning during map-assisted navigation is still an open research question. We thus conducted a real-world study with wayfinding experts in an unknown residential neighborhood. We aimed to assess how two different landmark visualization styles (abstract 2D vs. realistic 3D buildings) would affect experts’ spatial learning in a map-assisted navigation task during an emergency scenario. Using a between-subjects design, we asked Swiss military personnel to follow a given route using a mobile map, and to identify five task-relevant landmarks along the route. We recorded experts’ gaze behavior while navigating and examined their spatial learning after the navigation task. We found that experts’ spatial learning improved when they focused their visual attention on the environment, but the direction of attention between the map and the environment was not affected by the landmark visualization style. Further, there was no difference in spatial learning between the 2D and 3D groups. Contrary to previous research with general populations, this study suggests that the landmark visualization style does not enhance expert navigators’ navigation or spatial learning abilities, thus highlighting the need for population-specific mobile map design solutions

    Quantifying space, understanding minds: A visual summary approach

    Get PDF
    This paper presents an illustrated, validated taxonomy of research that compares spatial measures to human behavior. Spatial measures quantify the spatial characteristics of environments, such as the centrality of intersections in a street network or the accessibility of a room in a building from all the other rooms. While spatial measures have been of interest to spatial sciences, they are also of importance in the behavioral sciences for use in modeling human behavior. A high correlation between values for spatial measures and specific behaviors can provide insights into an environment\u27s legibility, and contribute to a deeper understanding of human spatial cognition. Research in this area takes place in several domains, which makes a full understanding of existing literature difficult. To address this challenge, we adopt a visual summary approach. Literature is analyzed, and recurring topics are identified and validated with independent inter-rater agreement tasks in order to create a robust taxonomy for spatial measures and human behavior. The taxonomy is then illustrated with a visual representation that allows for at-a-glance visual access to the content of individual research papers in a corpus. A public web interface has been created that allows interested researchers to add to the database and create visual summaries for their research papers using our taxonomy

    Computer models of saliency alone fail to predict subjective visual attention to landmarks during observed navigation

    Get PDF
    This study aimed to understand whether or not computer models of saliency could explain landmark saliency. An online survey was conducted and participants were asked to watch videos from a spatial navigation video game (Sea Hero Quest). Participants were asked to pay attention to the environments within which the boat was moving and to rate the perceived saliency of each landmark. In addition, state-of-the-art computer saliency models were used to objectively quantify landmark saliency. No significant relationship was found between objective and subjective saliency measures. This indicates that during passive observation of an environment while being navigated, current automated models of saliency fail to predict subjective reports of visual attention to landmarks

    Where Snow is a Landmark: Route Direction Elements in Alpine Contexts

    Get PDF
    Route directions research has mostly focused on urban space so far, highlighting human concepts of street networks based on a range of recurring elements such as route segments, decision points, landmarks and actions. We explored the way route directions reflect the features of space and activity in the context of mountaineering. Alpine route directions are only rarely segmented through decision points related to reorientation; instead, segmentation is based on changing topography. Segments are described with various degrees of detail, depending on difficulty. For landmark description, direction givers refer to properties such as type of surface, dimension, colour of landscape features; terrain properties (such as snow) can also serve as landmarks. Action descriptions reflect the geometrical conceptualization of landscape features and dimensionality of space. Further, they are very rich in the semantics of manner of motion

    A Wearable Indoor Navigation System for Blind and Visually Impaired Individuals

    Get PDF
    Indoor positioning and navigation for blind and visually impaired individuals has become an active field of research. The development of a reliable positioning and navigational system will reduce the suffering of the people with visual disabilities, help them live more independently, and promote their employment opportunities. In this work, a coarse-to-fine multi-resolution model is proposed for indoor navigation in hallway environments based on the use of a wearable computer called the eButton. This self-constructed device contains multiple sensors which are used for indoor positioning and localization in three layers of resolution: a global positioning system (GPS) layer for building identification; a Wi-Fi - barometer layer for rough position localization; and a digital camera - motion sensor layer for precise localization. In this multi-resolution model, a new theoretical framework is developed which uses the change of atmospheric pressure to determine the floor number in a multistory building. The digital camera and motion sensors within the eButton acquire both pictorial and motion data as a person with a normal vision walks along a hallway to establish a database. Precise indoor positioning and localization information is provided to the visually impaired individual based on a Kalman filter fusion algorithm and an automatic matching algorithm between the acquired images and those in the pre-established database. Motion calculation is based on the data from motion sensors is used to refine the localization result. Experiments were conducted to evaluate the performance of the algorithms. Our results show that the new device and algorithms can precisely determine the floor level and indoor location along hallways in multistory buildings, providing a powerful and unobtrusive navigational tool for blind and visually impaired individuals

    The usability analysis for the use of augmented reality and visual instructions in navigation services

    Get PDF
    The use of Augmented Reality and visual cues as a part of navigational instructions, in addition to conventional audio and textual instructions, may improve the experience of the users of the navigation services. This approach can be also more compatible with the way people give instructions in everyday life; People usually associate directions with visual cues (e.g. “turn right at the square”) when giving navigational instructions in their daily conversations. In this regard, landmarks as the unique and easy-to-recognise features can play an important role. Such easy to remember features, which are available both indoors and outdoors, can be helpful when exploring an unfamiliar environment. A Landmark-based navigation service can make users sure that they are on the correct route, as the user is reassured by seeing the landmark whose information/picture has just been provided as a part of navigational instruction. Such advantages of use of landmarks visual information as a part of the instructions can decrease the time of travel and improve the experiences of the users. This paper assesses how landmarks can improve the performance of pedestrian movements following landmark-based navigational instructions
    • …
    corecore