1,630 research outputs found

    An Experimental Study on Airborne Landmine Detection Using a Circular Synthetic Aperture Radar

    Full text link
    Many countries in the world are contaminated with landmines. Several thousand casualties occur every year. Although there are certain types of mines that can be detected from a safe stand-off position with tools, humanitarian demining is still mostly done by hand. As a new approach, an unmanned aerial system (UAS) equipped with a ground penetrating synthetic aperture radar (GPSAR) was developed, which is used to detect landmines, cluster munition, grenades, and improvised explosive devices (IEDs). The measurement system consists of a multicopter, a total station, an inertial measurement unit (IMU), and a frequency-modulated continuous-wave (FMCW) radar operating from 1 GHz to 4 GHz. The highly accurate localization of the measurement system and the full flexibility of the UAS are used to generate 3D-repeat-pass circular SAR images of buried antipersonnel landmines. In order to demonstrate the functionality of the system, 15 different dummy landmines were buried in a sandbox. The measurement results show the high potential of circular SAR for the detection of minimum metal mines. 11 out of 15 different test objects could be detected unambiguously with cm-level accuracy by examining depth profiles showing the amplitude of the targets response over the processing depth.Comment: 7 pages, 9 figure

    Advanced Techniques for Ground Penetrating Radar Imaging

    Get PDF
    Ground penetrating radar (GPR) has become one of the key technologies in subsurface sensing and, in general, in non-destructive testing (NDT), since it is able to detect both metallic and nonmetallic targets. GPR for NDT has been successfully introduced in a wide range of sectors, such as mining and geology, glaciology, civil engineering and civil works, archaeology, and security and defense. In recent decades, improvements in georeferencing and positioning systems have enabled the introduction of synthetic aperture radar (SAR) techniques in GPR systems, yielding GPR–SAR systems capable of providing high-resolution microwave images. In parallel, the radiofrequency front-end of GPR systems has been optimized in terms of compactness (e.g., smaller Tx/Rx antennas) and cost. These advances, combined with improvements in autonomous platforms, such as unmanned terrestrial and aerial vehicles, have fostered new fields of application for GPR, where fast and reliable detection capabilities are demanded. In addition, processing techniques have been improved, taking advantage of the research conducted in related fields like inverse scattering and imaging. As a result, novel and robust algorithms have been developed for clutter reduction, automatic target recognition, and efficient processing of large sets of measurements to enable real-time imaging, among others. This Special Issue provides an overview of the state of the art in GPR imaging, focusing on the latest advances from both hardware and software perspectives

    Array-based GPR SAR simulation and image reconstruction

    Get PDF
    Bibliography: leaves 53-55.Subsurface object detection has mainly been carried out using conventional ground penetrating radar (OPR) techniques, which use a single receiving antenna from which a number of range profiles (known as ""A Scope"" images) are assembled to form a two-dimensional data field (known as a ""B Scope"" image). These OPR systems have difficulties with high clutter level, surface reflections, limited ground penetration and the required fine resolution. The resolution in the across track and along track directions is limited by the physical aperture in these directions. This project aims at developing a SAR imaging technique, which uses a single transmitting/receiving antenna to synthesize a two-dimensional planar aperture. Thus a three-dimensional reflectivity image of a scene is generated. The resolution in the across track and along track directions is achieved via a SAR aperture synthesis technique. The depth/range resolution is achieved via the transmission of narrowband Stepped Frequency Continuous Wave (SFCW) signals

    Radar Imaging in Challenging Scenarios from Smart and Flexible Platforms

    Get PDF
    undefine

    Non-invasive methodological approach to detect and characterize high-risk sinkholes in urban cover evaporite karst: Integrated reflection seismics, PS-INSAR, leveling, 3D-GPR and ancillary data. a Ne Italian case study

    Get PDF
    Sinkholes linked to cover evaporite karst in urban environments still represent a challenge in terms of their clear identification and mapping considering the rehash and man-made structures. In the present research, we have proposed and tested a methodology to identify the subsiding features through an integrated and non-invasive multi-scale approach combining seismic reflection, PS-InSAR (PSI), leveling and full 3D Ground Penetrating Radar (GPR), and thus overpassing the limits of each method. The analysis was conducted in a small village in the Alta Val Tagliamento Valley (Friuli Venezia Giulia region, NE Italy). Here, sinkholes have been reported for a long time as well as the hazards linked to their presence. Within past years, several houses have been demolished and at present many of them are damaged. The PSI investigation allowed the identification of an area with higher vertical velocities; seismic reflection imagined the covered karst bedrock, identifying three depocenters; leveling data presented a downward displacement comparable with PSI results; 3D GPR, applied here for the first time in the study and characterization of sinkholes, defined shallow sinking features. Combining all the obtained results with accurate field observations, we identified and mapped the highest vulnerable zone

    Evaluation of subsidence induced by long-lasting buildings load using InSAR technique and geotechnical data: The case study of a Freight Terminal (Tuscany, Italy)

    Get PDF
    This paper shows the results of the comparison between Multi-temporal Synthetic Aperture Radar (MTInSAR) products derived from different sensors (C-band ERS 1/2, Envisat, Sentinel-1 and X-band COSMO-SkyMed) and geotechnical data to investigate the driving factors of subsidence which affect a freight terminal located along the a coastal plain of Tuscany (central Italy). MTInSAR data have been acquired in a very long period, between 1992 and 2018 and were analyzed in terms of subsidence rates and deformation time series at building scale. The obtained results show that the oldest buildings are still affected by a deformation rate close to −5 mm/yr, whereas recent buildings register rates around −40 mm/yr. Time series of deformation suggest that the deformation rates decrease over time following time-dependent trend that approximates the typical consolidation curve for compressible soils. The geotechnical and stratigraphical analysis of the subsurface data (boreholes, cone penetration tests and dilatometer tests) highlights the presence of a 15 m thick layer formed of clay characterized by poor geotechnical characteristics. The comparison among InSAR data, subsurface geological framework and geotechnical reconstruction suggests a possible evaluation of the timing of the primary and secondary consolidation processes
    corecore