42,640 research outputs found

    Structure from Articulated Motion: Accurate and Stable Monocular 3D Reconstruction without Training Data

    Full text link
    Recovery of articulated 3D structure from 2D observations is a challenging computer vision problem with many applications. Current learning-based approaches achieve state-of-the-art accuracy on public benchmarks but are restricted to specific types of objects and motions covered by the training datasets. Model-based approaches do not rely on training data but show lower accuracy on these datasets. In this paper, we introduce a model-based method called Structure from Articulated Motion (SfAM), which can recover multiple object and motion types without training on extensive data collections. At the same time, it performs on par with learning-based state-of-the-art approaches on public benchmarks and outperforms previous non-rigid structure from motion (NRSfM) methods. SfAM is built upon a general-purpose NRSfM technique while integrating a soft spatio-temporal constraint on the bone lengths. We use alternating optimization strategy to recover optimal geometry (i.e., bone proportions) together with 3D joint positions by enforcing the bone lengths consistency over a series of frames. SfAM is highly robust to noisy 2D annotations, generalizes to arbitrary objects and does not rely on training data, which is shown in extensive experiments on public benchmarks and real video sequences. We believe that it brings a new perspective on the domain of monocular 3D recovery of articulated structures, including human motion capture.Comment: 21 pages, 8 figures, 2 table

    Shape basis interpretation for monocular deformable 3D reconstruction

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, we propose a novel interpretable shape model to encode object non-rigidity. We first use the initial frames of a monocular video to recover a rest shape, used later to compute a dissimilarity measure based on a distance matrix measurement. Spectral analysis is then applied to this matrix to obtain a reduced shape basis, that in contrast to existing approaches, can be physically interpreted. In turn, these pre-computed shape bases are used to linearly span the deformation of a wide variety of objects. We introduce the low-rank basis into a sequential approach to recover both camera motion and non-rigid shape from the monocular video, by simply optimizing the weights of the linear combination using bundle adjustment. Since the number of parameters to optimize per frame is relatively small, specially when physical priors are considered, our approach is fast and can potentially run in real time. Validation is done in a wide variety of real-world objects, undergoing both inextensible and extensible deformations. Our approach achieves remarkable robustness to artifacts such as noisy and missing measurements and shows an improved performance to competing methods.Peer ReviewedPostprint (author's final draft

    Real-time 3D reconstruction of non-rigid shapes with a single moving camera

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/This paper describes a real-time sequential method to simultaneously recover the camera motion and the 3D shape of deformable objects from a calibrated monocular video. For this purpose, we consider the Navier-Cauchy equations used in 3D linear elasticity and solved by finite elements, to model the time-varying shape per frame. These equations are embedded in an extended Kalman filter, resulting in sequential Bayesian estimation approach. We represent the shape, with unknown material properties, as a combination of elastic elements whose nodal points correspond to salient points in the image. The global rigidity of the shape is encoded by a stiffness matrix, computed after assembling each of these elements. With this piecewise model, we can linearly relate the 3D displacements with the 3D acting forces that cause the object deformation, assumed to be normally distributed. While standard finite-element-method techniques require imposing boundary conditions to solve the resulting linear system, in this work we eliminate this requirement by modeling the compliance matrix with a generalized pseudoinverse that enforces a pre-fixed rank. Our framework also ensures surface continuity without the need for a post-processing step to stitch all the piecewise reconstructions into a global smooth shape. We present experimental results using both synthetic and real videos for different scenarios ranging from isometric to elastic deformations. We also show the consistency of the estimation with respect to 3D ground truth data, include several experiments assessing robustness against artifacts and finally, provide an experimental validation of our performance in real time at frame rate for small mapsPeer ReviewedPostprint (author's final draft

    Autonomous Tissue Scanning under Free-Form Motion for Intraoperative Tissue Characterisation

    Full text link
    In Minimally Invasive Surgery (MIS), tissue scanning with imaging probes is required for subsurface visualisation to characterise the state of the tissue. However, scanning of large tissue surfaces in the presence of deformation is a challenging task for the surgeon. Recently, robot-assisted local tissue scanning has been investigated for motion stabilisation of imaging probes to facilitate the capturing of good quality images and reduce the surgeon's cognitive load. Nonetheless, these approaches require the tissue surface to be static or deform with periodic motion. To eliminate these assumptions, we propose a visual servoing framework for autonomous tissue scanning, able to deal with free-form tissue deformation. The 3D structure of the surgical scene is recovered and a feature-based method is proposed to estimate the motion of the tissue in real-time. A desired scanning trajectory is manually defined on a reference frame and continuously updated using projective geometry to follow the tissue motion and control the movement of the robotic arm. The advantage of the proposed method is that it does not require the learning of the tissue motion prior to scanning and can deal with free-form deformation. We deployed this framework on the da Vinci surgical robot using the da Vinci Research Kit (dVRK) for Ultrasound tissue scanning. Since the framework does not rely on information from the Ultrasound data, it can be easily extended to other probe-based imaging modalities.Comment: 7 pages, 5 figures, ICRA 202

    High-resolution 3D optical microscopy inside the beating zebrafish heart using prospective optical gating

    Get PDF
    3D fluorescence imaging is a fundamental tool in the study of functional and developmental biology, but effective imaging is particularly difficult in moving structures such as the beating heart. We have developed a non-invasive real-time optical gating system that is able to exploit the periodic nature of the motion to acquire high resolution 3D images of the normally-beating zebrafish heart without any unnecessary exposure of the sample to harmful excitation light. In order for the image stack to be artefact-free, it is essential to use a synchronization source that is invariant as the sample is scanned in 3D. We therefore describe a scheme whereby fluorescence image slices are scanned through the sample while a brightfield camera sharing the same objective lens is maintained at a fixed focus, with correction of sample drift also included. This enables us to maintain, throughout an extended 3D volume, the same standard of synchronization we have previously demonstrated in and near a single 2D plane. Thus we are able image the complete beating zebrafish heart exactly as if the heart had been artificially stopped, but sidestepping this undesirable interference with the heart and instead allowing the heart to beat as normal

    Stable Camera Motion Estimation Using Convex Programming

    Full text link
    We study the inverse problem of estimating n locations t1,...,tnt_1, ..., t_n (up to global scale, translation and negation) in RdR^d from noisy measurements of a subset of the (unsigned) pairwise lines that connect them, that is, from noisy measurements of ±(ti−tj)/∥ti−tj∥\pm (t_i - t_j)/\|t_i - t_j\| for some pairs (i,j) (where the signs are unknown). This problem is at the core of the structure from motion (SfM) problem in computer vision, where the tit_i's represent camera locations in R3R^3. The noiseless version of the problem, with exact line measurements, has been considered previously under the general title of parallel rigidity theory, mainly in order to characterize the conditions for unique realization of locations. For noisy pairwise line measurements, current methods tend to produce spurious solutions that are clustered around a few locations. This sensitivity of the location estimates is a well-known problem in SfM, especially for large, irregular collections of images. In this paper we introduce a semidefinite programming (SDP) formulation, specially tailored to overcome the clustering phenomenon. We further identify the implications of parallel rigidity theory for the location estimation problem to be well-posed, and prove exact (in the noiseless case) and stable location recovery results. We also formulate an alternating direction method to solve the resulting semidefinite program, and provide a distributed version of our formulation for large numbers of locations. Specifically for the camera location estimation problem, we formulate a pairwise line estimation method based on robust camera orientation and subspace estimation. Lastly, we demonstrate the utility of our algorithm through experiments on real images.Comment: 40 pages, 12 figures, 6 tables; notation and some unclear parts updated, some typos correcte

    Non-Rigid Structure from Motion for Complex Motion

    Get PDF
    Recovering deformable 3D motion from temporal 2D point tracks in a monocular video is an open problem with many everyday applications throughout science and industry, or the new augmented reality. Recently, several techniques have been proposed to deal the problem called Non-Rigid Structure from Motion (NRSfM), however, they can exhibit poor reconstruction performance on complex motion. In this project, we will analyze these situations for primitive human actions such as walk, run, sit, jump, etc. on different scenarios, reviewing first the current techniques to finally present our novel method. This approach is able to model complex motion into a union of subspaces, rather than the summation occurring in standard low-rank shape methods, allowing better reconstruction accuracy. Experiments in a wide range of sequences and types of motion illustrate the benefits of this new approac
    • …
    corecore