3,362 research outputs found

    Human Perambulation as a Self Calibrating Biometric

    No full text
    This paper introduces a novel method of single camera gait reconstruction which is independent of the walking direction and of the camera parameters. Recognizing people by gait has unique advantages with respect to other biometric techniques: the identification of the walking subject is completely unobtrusive and the identification can be achieved at distance. Recently much research has been conducted into the recognition of frontoparallel gait. The proposed method relies on the very nature of walking to achieve the independence from walking direction. Three major assumptions have been done: human gait is cyclic; the distances between the bone joints are invariant during the execution of the movement; and the articulated leg motion is approximately planar, since almost all of the perceived motion is contained within a single limb swing plane. The method has been tested on several subjects walking freely along six different directions in a small enclosed area. The results show that recognition can be achieved without calibration and without dependence on view direction. The obtained results are particularly encouraging for future system development and for its application in real surveillance scenarios

    Gait recognition and understanding based on hierarchical temporal memory using 3D gait semantic folding

    Get PDF
    Gait recognition and understanding systems have shown a wide-ranging application prospect. However, their use of unstructured data from image and video has affected their performance, e.g., they are easily influenced by multi-views, occlusion, clothes, and object carrying conditions. This paper addresses these problems using a realistic 3-dimensional (3D) human structural data and sequential pattern learning framework with top-down attention modulating mechanism based on Hierarchical Temporal Memory (HTM). First, an accurate 2-dimensional (2D) to 3D human body pose and shape semantic parameters estimation method is proposed, which exploits the advantages of an instance-level body parsing model and a virtual dressing method. Second, by using gait semantic folding, the estimated body parameters are encoded using a sparse 2D matrix to construct the structural gait semantic image. In order to achieve time-based gait recognition, an HTM Network is constructed to obtain the sequence-level gait sparse distribution representations (SL-GSDRs). A top-down attention mechanism is introduced to deal with various conditions including multi-views by refining the SL-GSDRs, according to prior knowledge. The proposed gait learning model not only aids gait recognition tasks to overcome the difficulties in real application scenarios but also provides the structured gait semantic images for visual cognition. Experimental analyses on CMU MoBo, CASIA B, TUM-IITKGP, and KY4D datasets show a significant performance gain in terms of accuracy and robustness

    Gait recognition using a few gait frames.

    Full text link
    Gait has been deemed as an alternative biometric in video-based surveillance applications, since it can be used to recognize individuals from a far distance without their interaction and cooperation. Recently, many gait recognition methods have been proposed, aiming at reducing the influence caused by exterior factors. However, most of these methods are developed based on sufficient input gait frames, and their recognition performance will sharply decrease if the frame number drops. In the real-world scenario, it is impossible to always obtain a sufficient number of gait frames for each subject due to many reasons, e.g., occlusion and illumination. Therefore, it is necessary to improve the gait recognition performance when the available gait frames are limited. This paper starts with three different strategies, aiming at producing more input frames and eliminating the generalization error cause by insufficient input data. Meanwhile, a two-branch network is also proposed in this paper to formulate robust gait representations from the original and new generated input gait frames. According to our experiments, under the limited gait frames being used, it was verified that the proposed method can achieve a reliable performance for gait recognition

    Vision-based techniques for gait recognition

    Full text link
    Global security concerns have raised a proliferation of video surveillance devices. Intelligent surveillance systems seek to discover possible threats automatically and raise alerts. Being able to identify the surveyed object can help determine its threat level. The current generation of devices provide digital video data to be analysed for time varying features to assist in the identification process. Commonly, people queue up to access a facility and approach a video camera in full frontal view. In this environment, a variety of biometrics are available - for example, gait which includes temporal features like stride period. Gait can be measured unobtrusively at a distance. The video data will also include face features, which are short-range biometrics. In this way, one can combine biometrics naturally using one set of data. In this paper we survey current techniques of gait recognition and modelling with the environment in which the research was conducted. We also discuss in detail the issues arising from deriving gait data, such as perspective and occlusion effects, together with the associated computer vision challenges of reliable tracking of human movement. Then, after highlighting these issues and challenges related to gait processing, we proceed to discuss the frameworks combining gait with other biometrics. We then provide motivations for a novel paradigm in biometrics-based human recognition, i.e. the use of the fronto-normal view of gait as a far-range biometrics combined with biometrics operating at a near distance
    • …
    corecore