576 research outputs found

    3D Innovations in Personalized Surgery

    Get PDF
    Current practice involves the use of 3D surgical planning and patient-specific solutions in multiple surgical areas of expertise. Patient-specific solutions have been endorsed for several years in numerous publications due to their associated benefits around accuracy, safety, and predictability of surgical outcome. The basis of 3D surgical planning is the use of high-quality medical images (e.g., CT, MRI, or PET-scans). The translation from 3D digital planning toward surgical applications was developed hand in hand with a rise in 3D printing applications of multiple biocompatible materials. These technical aspects of medical care require engineers’ or technical physicians’ expertise for optimal safe and effective implementation in daily clinical routines.The aim and scope of this Special Issue is high-tech solutions in personalized surgery, based on 3D technology and, more specifically, bone-related surgery. Full-papers or highly innovative technical notes or (systematic) reviews that relate to innovative personalized surgery are invited. This can include optimization of imaging for 3D VSP, optimization of 3D VSP workflow and its translation toward the surgical procedure, or optimization of personalized implants or devices in relation to bone surgery

    AN AUTOMATED, DEEP LEARNING APPROACH TO SYSTEMATICALLY & SEQUENTIALLY DERIVE THREE-DIMENSIONAL KNEE KINEMATICS DIRECTLY FROM TWO-DIMENSIONAL FLUOROSCOPIC VIDEO

    Get PDF
    Total knee arthroplasty (TKA), also known as total knee replacement, is a surgical procedure to replace damaged parts of the knee joint with artificial components. It aims to relieve pain and improve knee function. TKA can improve knee kinematics and reduce pain, but it may also cause altered joint mechanics and complications. Proper patient selection, implant design, and surgical technique are important for successful outcomes. Kinematics analysis plays a vital role in TKA by evaluating knee joint movement and mechanics. It helps assess surgery success, guides implant and technique selection, informs implant design improvements, detects problems early, and improves patient outcomes. However, evaluating the kinematics of patients using conventional approaches presents significant challenges. The reliance on 3D CAD models limits applicability, as not all patients have access to such models. Moreover, the manual and time-consuming nature of the process makes it impractical for timely evaluations. Furthermore, the evaluation is confined to laboratory settings, limiting its feasibility in various locations. This study aims to address these limitations by introducing a new methodology for analyzing in vivo 3D kinematics using an automated deep learning approach. The proposed methodology involves several steps, starting with image segmentation of the femur and tibia using a robust deep learning approach. Subsequently, 3D reconstruction of the implants is performed, followed by automated registration. Finally, efficient knee kinematics modeling is conducted. The final kinematics results showed potential for reducing workload and increasing efficiency. The algorithms demonstrated high speed and accuracy, which could enable real-time TKA kinematics analysis in the operating room or clinical settings. Unlike previous studies that relied on sponsorships and limited patient samples, this algorithm allows the analysis of any patient, anywhere, and at any time, accommodating larger subject populations and complete fluoroscopic sequences. Although further improvements can be made, the study showcases the potential of machine learning to expand access to TKA analysis tools and advance biomedical engineering applications

    Biomaterials for Bone Tissue Engineering 2020

    Get PDF
    This book presents recent advances in the field of bone tissue engineering, including molecular insights, innovative biomaterials with regenerative properties (e.g., osteoinduction and osteoconduction), and physical stimuli to enhance bone regeneration

    A Novel Method for Determining the Inherent Capabilities of Computer and Robotic-Assisted Total Knee Arthroplasty Devices

    Get PDF
    This thesis presents a method for evaluating and comparing assistive total knee arthroplasty (TKA) devices while controlling surgeon landmarking variability. To achieve consistent landmark selection by surgeons during TKA procedures, the method uses identical 3D-printed knees with indented landmarks. This method was used to compare a robotic and computer-assisted TKA device on three metrics: measurement accuracy, alignment accuracy, and cut-surface uniformity. Although both devices had considerable sagittal plane measurement errors, the robotic device had better measurement and alignment accuracy than the computer-assisted device. Furthermore, the robotic device\u27s measuring error compensated for cutting errors, but the computer-assisted device\u27s compounded them. However, both techniques were equally able to maintain small bone-implant gaps. This thesis demonstrates that this new method can be used to draw conclusions about the inherent capabilities and limitations of robotic and computer-assisted TKA devices

    Simultaneous Hip Implant Segmentation and Gruen Landmarks Detection

    Get PDF
    The assessment of implant status and complications of Total Hip Replacement (THR) relies mainly on the clinical evaluation of the X-ray images to analyse the implant and the surrounding rigid structures. Current clinical practise depends on the manual identification of important landmarks to define the implant boundary and to analyse many features in arthroplasty X-ray images, which is time-consuming and could be prone to human error. Semantic segmentation based on the Convolutional Neural Network (CNN) has demonstrated successful results in many medical segmentation tasks. However, these networks cannot define explicit properties that lead to inaccurate segmentation, especially with the limited size of image datasets. Our work integrates clinical knowledge with CNN to segment the implant and detect important features simultaneously. This is instrumental in the diagnosis of complications of arthroplasty, particularly for loose implant and implant-closed bone fractures, where the location of the fracture in relation to the implant must be accurately determined. In this work, we define the points of interest using Gruen zones that represent the interface of the implant with the surrounding bone to build a Statistical Shape Model (SSM). We propose a multitask CNN that combines regression of pose and shape parameters constructed from the SSM and semantic segmentation of the implant. This integrated approach has improved the estimation of implant shape, from 74% to 80% dice score, making segmentation realistic and allowing automatic detection of Gruen zones. To train and evaluate our method, we generated a dataset of annotated hip arthroplasty X-ray images that will be made available

    Ceramic Materials for 3D Printing of Biomimetic Bone Scaffolds – Current state–of–the–art & Future Perspectives

    Get PDF
    Ceramic bone implants have potential properties ideal for long-term implantation applications. On comparison with other materials, ceramic biomaterials have advantages such as biocompatibility, low cost, osteoconductivity, osteoinductivity, corrosion resistance, and can be made into various shapes with desired surface properties. Among transplantation surgeries, bone transplantation is the second largest in the globe after blood transfusion which is an indication for rising hope on the potential treatment options for bone. 3D printing is one of the most advanced fabrication techniques to create customized bone implants using materials such as ceramics and their composites. Developing bone scaffolds that precisely recapitulate the mechanical properties and other biological functions of bone remains a major challenge. However, extensive research on ceramic biomaterials have resulted in the successful 3D printing of complex bony designs with >50% porosity with cortical bone mechanical properties. This review critically analyses the use of various 3D printing techniques to fabricate ceramic bone scaffolds. Further, various natural and synthetic ceramic materials for producing customized ceramic implants are discussed along with potential clinical applications. Finally, a list of companies that offer customized 3D printed implants and the future on clinical translation of 3D printed ceramic bone implants are outlined

    The Use of Skeletal Muscle to Amplify Action Potentials in Transected Peripheral Nerves

    Get PDF
    Upper limb amputees suffer with problems associated with control and attachment of prostheses. Skin-surface electrodes placed over the stump, which detect myoelectric signals, are traditionally used to control hand movements. However, this method is unintuitive, the electrodes lift-off, and signal selectivity can be an issue. One solution to these limitations is to implant electrodes directly on muscles. Another approach is to implant electrodes directly into the nerves that innervate the muscles. A significant challenge with both solutions is the reliable transmission of biosignals across the skin barrier. In this thesis, I investigated the use of implantable muscle electrodes in an ovine model using myoelectrodes in combination with a bone-anchor, acting as a conduit for signal transmission. High-quality readings were obtained which were significantly better than skin-surface electrode readings. I further investigated the effect of electrode configurations to achieve the best signal quality. For direct recording from nerves, I tested the effect of adsorbed endoneural basement membrane proteins on nerve regeneration in vivo using microchannel neural interfaces implanted in rat sciatic nerves. Muscle and nerve signal recordings were obtained and improvements in sciatic nerve function were observed. Direct skeletal fixation of a prosthesis to the amputation stump using a bone-anchor has been proposed as a solution to skin problems associated with traditional socket-type prostheses. However, there remains a concern about the risk of infection between the implant and skin. Achieving a durable seal at this interface is therefore crucial, which formed the final part of the thesis. Bone-anchors were optimised for surface pore size and coatings to facilitate binding of human dermal fibroblasts to optimise skin-implant seal in an ovine model. Implants silanised with Arginine-Glycine-Aspartic Acid experienced significantly increased dermal tissue infiltration. This approach may therefore improve the soft tissue seal, and thus success of bone-anchored implants. By addressing both the way prostheses are attached to the amputation stump, by way of direct skeletal fixation, as well as providing high fidelity biosignals for high-level intuitive prosthetic control, I aim to further the field of limb loss rehabilitation

    Current Trends and Future Directions in Prosthetic and Implant Dentistry in the Digital Era

    Get PDF
    Advancements in digital technologies are reshaping the world of dentistry, from prosthodontics to implant dentistry. Intraoral scanners, facial scanners, 3D printers, and milling machines have revolutionized the clinical approach and operative workflow in daily practice. However, digital dentistry brings several challenges to clinicians due to the rapid evolution of new technologies and the lack of evidence-based guidelines for their correct use. The aim of this Special Issue is to cover the latest advances in the development and application of digital technologies in prosthetic and implant dentistry. We wish to provide both clinicians and researchers with a comprehensive and up-to-date source of information on current trends, limitations, and potential future applications of digital technologies in daily clinical practice

    Impresión 3D en Cirugía Ortopédica y Traumatología. Revisión sistemática de su aplicabilidad y estudio de los métodos de esterilización más adecuados para la utilización en quirófanos de las impresiones realizadas en el hospital.

    Get PDF
    Introduction In-Hospital 3D printing has been broadly developed since the end of the addictive manufacturing patents. However, although there are many printing technologies, the most frequent in our field are Fused Deposition Modelling (FDM) and Stereolithography (SLA), which usually use hollow infill patterns in order to save time and material. It is common to use these models and surgical guides in the operating room, however, there were no publications warranting an adequate sterilization of the in-house prints. Objectives To describe systematically all the current applications of in-hospital 3D printing up to date and to run an experimental study which demonstrates the sterilization of the inside of our anatomical models and surgical guides. Material and Methods A systematic review was made on PubMed to obtain all the published articles regarding this topic up to December 2021. Those publications in other language (not in English or Spanish) or describing industrial applications, cell therapies, pharma therapies or involving human specimens were rejected. A record card was made for each application to make further search easier. For the experimental study, a total of 24 cylinders were designed and printed with a 3D printer in Polylactic Acid (PLA) with an infill density of 12%. Manufacturing was paused when 60% of the print was reached and 20 of the cylinders were inoculated with 0.4 mL of a suspension of S epidermidis ATTCC 1228 in saline solution at turbidity 1 McFarland. Printing was resumed, being all the pieces completely sealed with the inoculum inside. Posteriorly, 4 groups were made according to the chosen sterilization method: Ethylene Oxide (EtO), Gas Plasma, Steam Heat or non-sterilized (positive control). Each group included 5 contaminated cylinders and 1 non-contaminated cylinder as a negative control. After sterilization, the inside of the cylinders was cultured during 7 days. Results We obtained a total of 1193 articles in the research, of which 298 articles met the inclusion criteria, finding a total of 143 applications which are summarized as record cards. In the sterility study, we observed bacterial growth of just a few Forming Colony Units (FCU) in 4 out of 5 positive controls and in 2 out of 5 contaminated cylinders sterilized with Gas Plasma. We could not assess any bacterial growth in any of the EtO or Steam Heat samples or in any of the negative controls. Pieces sterilized under Steam Heat resulted completely deformed. Conclusions There are multiple applications for in-house 3D printing in the field of orthopaedics. High temperatures reached during the procedure of additive manufacturing can decrease the bacterial load of the biomodels. However, there is a potential risk of contamination during the proce- dure. We recommend sterilization with EtO for in-hospital 3D-printed PLA hollow biomodels or guides. Otherwise, in case of using Gas Plasma, an infill of 100% should be applied.Introducción La impresión 3D hospitalaria ha cobrado un gran impulso desde la liberalización de las patentes sobre la fabricación aditiva. Aunque existen multitud de tecnologías de impresión, las más frecuentes en nuestro medio son la impresión por deposición de material fundido (FDM) y la impresión estereolitográfica (SLA), las cuales, suelen recurrir a patrones de relleno incompletos para ahorrar tiempo y material. Aunque es frecuente la utilización de biomodelos y guías quirúrgicas obtenidas por este medio en los quirófanos, no existían hasta la fecha estudios que garantizasen una adecuada esterilidad de los mismos. Objetivos Realizar una descripción sistematizada de todas las aplicaciones descritas de la impresión 3D hospitalaria hasta la fecha y hacer un estudio experimental que demuestre la capacidad esterilizante del interior de nuestros biomodelos y guías quirúrgicas. Material y Métodos Se realiza una revisión sistemática en PubMed para obtener todos los artículos publicados sobre el tema hasta diciembre de 2021, descartándose aquellos en otro idioma o que tratan sobre aplicaciones industriales, celulares, farmacológicas o experimentales en cadáver. Se realiza una ficha de cada una de las aplicaciones para facilitar su posterior consulta. Por otro lado, realizamos un estudio experimental con 24 cilindros impresos en ácido poliláctico con una densidad de relleno del 12%. La fabricación se detuvo cuando se alcanzó el 60% de la impresión y 20 de los cilindros se inocularon con 0.4mL de una suspensión de S epidermidis ATTCC 1228 en solución salina con una turbidez de 1 McFarland. Tras la inoculación, se continuó la impresión quedando las piezas completamente selladas con el inóculo en su interior. Posteriormente, se crearon 4 grupos de acuerdo con el método de esterilización empleado (Óxido de etileno, Gas plasma, Autoclave y grupo control positivo, sin esterilizar). Cada grupo incluyó 5 cilindros contaminados y 1 no contaminado como control negativo. Tras la esterilización, el interior de los cilindros se cultivó durante 7 días. Resultados Se han obtenido un total de 1193 artículos en la búsqueda de los cuales 298 artículos cumplieron los criterios de inclusión, obteniéndose un total de 143 aplicaciones que se exponen a modo de fichas. En el estudio de esterilidad se observe crecimiento bacteriano de unas pocas unidades formadoras de colonias en 4 de los 5 controles positivos y en 2 de los 5 cilindros contaminados y esterilizados con Gas plasma. No se observó crecimiento en ninguno de los cilindros esteriliados con Óxido de etileno o Autoclave, ni tampoco en ninguno de los controles negativos. Sin embargo, aquellas muestras esterilizadas en Autoclave se encontraron completamente deformadas. Conclusiones Existen infinidad de aplicaciones de la impresión 3D hospitalaria en el campo de la cirugía ortopédica y traumatología. Las altas temperaturas alcanzadas durante el proceso de fabricación aditiva pueden disminuir la carga bacteriana de los biomodelos. Sin embargo, existe un riesgo potencial de contaminación durante el procedimiento, por lo que recomendamos la esterilización con Óxido de etileno para las impresiones intrahospitalarias de biomodelos y guías huecas realizadas con ácido poliláctico. En caso de utilizar Gas plasma, recomendamos un relleno del 100% o la utilización de otros materiales más resistentes a las altas temperaturas del Autoclave.Escuela de DoctoradoDoctorado en Investigación en Ciencias de la Salu
    corecore