697 research outputs found

    Stereo Laryngoscopic Impact Site Prediction for Droplet-Based Stimulation of the Laryngeal Adductor Reflex

    Get PDF
    The laryngeal adductor reflex (LAR) is a vital reflex of the human larynx. LAR malfunctions may cause life-threatening aspiration events. An objective, noninvasive, and reproducible method for LAR assessment is still lacking. Stimulation of the larynx by droplet impact, termed Microdroplet Impulse Testing of the LAR (MIT-LAR), may remedy this situation. However, droplet instability and imprecise stimulus application thus far prevented MIT-LAR from gaining clinical relevance. We present a system comprising two alternative, custom-built stereo laryngoscopes, each offering a distinct set of properties, a droplet applicator module, and image/point cloud processing algorithms to enable a targeted, droplet-based LAR stimulation. Droplet impact site prediction (ISP) is achieved by droplet trajectory identification and spatial target reconstruction. The reconstruction and ISP accuracies were experimentally evaluated. Global spatial reconstruction errors at the glottal area of (0.3±0.3) mm and (0.4±0.3) mm and global ISP errors of (0.9±0.6) mm and (1.3±0.8) mm were found for a rod lens-based and an alternative, fiberoptic laryngoscope, respectively. In the case of the rod lens-based system, 96% of all observed ISP error values are inferior to 2 mm; a value of 80% was found with the fiberoptic assembly. This contribution represents an important step towards introducing a reproducible and objective LAR screening method into the clinical routine

    Modeling and imaging of the vocal fold vibration for voice health.

    Get PDF

    High Fidelity Computational Modeling and Analysis of Voice Production

    Get PDF
    This research aims to improve the fundamental understanding of the multiphysics nature of voice production, particularly, the dynamic couplings among glottal flow, vocal fold vibration and airway acoustics through high-fidelity computational modeling and simulations. Built upon in-house numerical solvers, including an immersed-boundary-method based incompressible flow solver, a finite element method based solid mechanics solver and a hydrodynamic/aerodynamic splitting method based acoustics solver, a fully coupled, continuum mechanics based fluid-structure-acoustics interaction model was developed to simulate the flow-induced vocal fold vibrations and sound production in birds and mammals. Extensive validations of the model were conducted by comparing to excised syringeal and laryngeal experiments. The results showed that, driven by realistic representations of physiology and experimental conditions, including the geometries, material properties and boundary conditions, the model had an excellent agreement with the experiments on the vocal fold vibration patterns, acoustics and intraglottal flow dynamics, demonstrating that the model is able to reproduce realistic phonatory dynamics during voice production. The model was then utilized to investigate the effect of vocal fold inner structures on voice production. Assuming the human vocal fold to be a three-layer structure, this research focused on the effect of longitudinal variation of layer thickness as well as the cover-body thickness ratio on vocal fold vibrations. The results showed that the longitudinal variation of the cover and ligament layers thicknesses had little effect on the flow rate, vocal fold vibration amplitude and pattern but affected the glottal angle in different coronal planes, which also influenced the energy transfer between glottal flow and the vocal fold. The cover-body thickness ratio had a complex nonlinear effect on the vocal fold vibration and voice production. Increasing the cover-body thickness ratio promoted the excitation of the wave-type modes of the vocal fold, which were also higher-eigenfrequency modes, driving the vibrations to higher frequencies. This has created complex nonlinear bifurcations. The results from the research has important clinical implications on voice disorder diagnosis and treatment as voice disorders are often associated with mechanical status changes of the vocal fold tissues and their treatment often focus on restoring the mechanical status of the vocal folds
    • …
    corecore