24,844 research outputs found

    Separation of line drawings based on split faces for 3D object reconstruction

    Get PDF
    © 2014 IEEE. Reconstructing 3D objects from single line drawings is often desirable in computer vision and graphics applications. If the line drawing of a complex 3D object is decomposed into primitives of simple shape, the object can be easily reconstructed. We propose an effective method to conduct the line drawing separation and turn a complex line drawing into parametric 3D models. This is achieved by recursively separating the line drawing using two types of split faces. Our experiments show that the proposed separation method can generate more basic and simple line drawings, and its combination with the example-based reconstruction can robustly recover wider range of complex parametric 3D objects than previous methods.This work was supported by grants from Science, Industry, Trade, and Information Technology Commission of Shenzhen Municipality (No. JC201005270378A), Guangdong Innovative Research Team Program (No. 201001D0104648280), Shenzhen Basic Research Program (JCYJ20120617114614438, JC201005270350A, JCYJ20120903092050890), Scientific Research Fund of Hunan Provincial Education Department (No. 13C073), Industrial Technology Research and Development Program of Hengyang Science and Technology Bureau (No.2013KG75), and the Construct Program of the Key Discipline in Hunan Provinc

    3D object reconstruction from line drawings.

    Get PDF
    Cao Liangliang.Thesis (M.Phil.)--Chinese University of Hong Kong, 2005.Includes bibliographical references (leaves 64-69).Abstracts in English and Chinese.Chapter 1 --- Introduction and Related Work --- p.1Chapter 1.1 --- Reconstruction from Single Line Drawings and the Applications --- p.1Chapter 1.2 --- Optimization-based Reconstruction --- p.2Chapter 1.3 --- Other Reconstruction Methods --- p.2Chapter 1.3.1 --- Line Labeling and Algebraic Methods --- p.2Chapter 1.3.2 --- CAD Reconstruction --- p.3Chapter 1.3.3 --- Modelling from Images --- p.3Chapter 1.4 --- Finding Faces of Line Drawings --- p.4Chapter 1.5 --- Generalized Cylinder --- p.4Chapter 1.6 --- Research Problems and Our Contribution --- p.5Chapter 1.6.1 --- A New Criteria --- p.5Chapter 1.6.2 --- Recover Objects from Line Drawings without Hidden Lines --- p.6Chapter 1.6.3 --- Reconstruction of Curved Objects --- p.6Chapter 1.6.4 --- Planar Limbs Assumption and the Derived Models --- p.6Chapter 2 --- A New Criteria for Reconstruction --- p.8Chapter 2.1 --- Introduction --- p.8Chapter 2.2 --- Human Visual Perception and the Symmetry Measure --- p.10Chapter 2.3 --- Reconstruction Based on Symmetry and Planarity --- p.11Chapter 2.3.1 --- Finding Faces --- p.11Chapter 2.3.2 --- Constraint of Planarity --- p.11Chapter 2.3.3 --- Objective Function --- p.12Chapter 2.3.4 --- Reconstruction Algorithm --- p.13Chapter 2.4 --- Experimental Results --- p.13Chapter 2.5 --- Summary --- p.18Chapter 3 --- Line Drawings without Hidden Lines: Inference and Reconstruction --- p.19Chapter 3.1 --- Introduction --- p.19Chapter 3.2 --- Terminology --- p.20Chapter 3.3 --- Theoretical Inference of the Hidden Topological Structure --- p.21Chapter 3.3.1 --- Assumptions --- p.21Chapter 3.3.2 --- Finding the Degrees and Ranks --- p.22Chapter 3.3.3 --- Constraints for the Inference --- p.23Chapter 3.4 --- An Algorithm to Recover the Hidden Topological Structure --- p.25Chapter 3.4.1 --- Outline of the Algorithm --- p.26Chapter 3.4.2 --- Constructing the Initial Hidden Structure --- p.26Chapter 3.4.3 --- Reducing Initial Hidden Structure --- p.27Chapter 3.4.4 --- Selecting the Most Plausible Structure --- p.28Chapter 3.5 --- Reconstruction of 3D Objects --- p.29Chapter 3.6 --- Experimental Results --- p.32Chapter 3.7 --- Summary --- p.32Chapter 4 --- Curved Objects Reconstruction from 2D Line Drawings --- p.35Chapter 4.1 --- Introduction --- p.35Chapter 4.2 --- Related Work --- p.36Chapter 4.2.1 --- Face Identification --- p.36Chapter 4.2.2 --- 3D Reconstruction of planar objects --- p.37Chapter 4.3 --- Reconstruction of Curved Objects --- p.37Chapter 4.3.1 --- Transformation of Line Drawings --- p.37Chapter 4.3.2 --- Finding 3D Bezier Curves --- p.39Chapter 4.3.3 --- Bezier Surface Patches and Boundaries --- p.40Chapter 4.3.4 --- Generating Bezier Surface Patches --- p.41Chapter 4.4 --- Results --- p.43Chapter 4.5 --- Summary --- p.45Chapter 5 --- Planar Limbs and Degen Generalized Cylinders --- p.47Chapter 5.1 --- Introduction --- p.47Chapter 5.2 --- Planar Limbs and View Directions --- p.49Chapter 5.3 --- DGCs in Homogeneous Coordinates --- p.53Chapter 5.3.1 --- Homogeneous Coordinates --- p.53Chapter 5.3.2 --- Degen Surfaces --- p.54Chapter 5.3.3 --- DGCs --- p.54Chapter 5.4 --- Properties of DGCs --- p.56Chapter 5.5 --- Potential Applications --- p.59Chapter 5.5.1 --- Recovery of DGC Descriptions --- p.59Chapter 5.5.2 --- Deformable DGCs --- p.60Chapter 5.6 --- Summary --- p.61Chapter 6 --- Conclusion and Future Work --- p.62Bibliography --- p.6

    3D object reconstruction from 2D and 3D line drawings.

    Get PDF
    Chen, Yu.Thesis (M.Phil.)--Chinese University of Hong Kong, 2008.Includes bibliographical references (leaves 78-85).Abstracts in English and Chinese.Chapter 1 --- Introduction and Related Work --- p.1Chapter 1.1 --- Reconstruction from 2D Line Drawings and the Applications --- p.2Chapter 1.2 --- Previous Work on 3D Reconstruction from Single 2D Line Drawings --- p.4Chapter 1.3 --- Other Related Work on Interpretation of 2D Line Drawings --- p.5Chapter 1.3.1 --- Line Labeling and Superstrictness Problem --- p.6Chapter 1.3.2 --- CAD Reconstruction --- p.6Chapter 1.3.3 --- Modeling from Images --- p.6Chapter 1.3.4 --- Identifying Faces in the Line Drawings --- p.7Chapter 1.4 --- 3D Modeling Systems --- p.8Chapter 1.5 --- Research Problems and Our Contributions --- p.10Chapter 1.5.1 --- Recovering Complex Manifold Objects from Line Drawings --- p.10Chapter 1.5.2 --- The Vision-based Sketching System --- p.11Chapter 2 --- Reconstruction from Complex Line Drawings --- p.13Chapter 2.1 --- Introduction --- p.13Chapter 2.2 --- Assumptions and Terminology --- p.15Chapter 2.3 --- Separation of a Line Drawing --- p.17Chapter 2.3.1 --- Classification of Internal Faces --- p.18Chapter 2.3.2 --- Separating a Line Drawing along Internal Faces of Type 1 --- p.19Chapter 2.3.3 --- Detecting Internal Faces of Type 2 --- p.20Chapter 2.3.4 --- Separating a Line Drawing along Internal Faces of Type 2 --- p.28Chapter 2.4 --- 3D Reconstruction --- p.44Chapter 2.4.1 --- 3D Reconstruction from a Line Drawing --- p.44Chapter 2.4.2 --- Merging 3D Manifolds --- p.45Chapter 2.4.3 --- The Complete 3D Reconstruction Algorithm --- p.47Chapter 2.5 --- Experimental Results --- p.47Chapter 2.6 --- Summary --- p.52Chapter 3 --- A Vision-Based Sketching System for 3D Object Design --- p.54Chapter 3.1 --- Introduction --- p.54Chapter 3.2 --- The Sketching System --- p.55Chapter 3.3 --- 3D Geometry of the System --- p.56Chapter 3.3.1 --- Locating the Wand --- p.57Chapter 3.3.2 --- Calibration --- p.59Chapter 3.3.3 --- Working Space --- p.60Chapter 3.4 --- Wireframe Input and Object Editing --- p.62Chapter 3.5 --- Surface Generation --- p.63Chapter 3.5.1 --- Face Identification --- p.64Chapter 3.5.2 --- Planar Surface Generation --- p.65Chapter 3.5.3 --- Smooth Curved Surface Generation --- p.67Chapter 3.6 --- Experiments --- p.70Chapter 3.7 --- Summary --- p.72Chapter 4 --- Conclusion and Future Work --- p.74Chapter 4.1 --- Conclusion --- p.74Chapter 4.2 --- Future Work --- p.75Chapter 4.2.1 --- Learning-Based Line Drawing Reconstruction --- p.75Chapter 4.2.2 --- New Query Interface for 3D Object Retrieval --- p.75Chapter 4.2.3 --- Curved Object Reconstruction --- p.76Chapter 4.2.4 --- Improving the 3D Sketch System --- p.77Chapter 4.2.5 --- Other Directions --- p.77Bibliography --- p.7

    3D reconstruction of curved objects from single 2D line drawings.

    Get PDF
    Wang, Yingze.Thesis (M.Phil.)--Chinese University of Hong Kong, 2009.Includes bibliographical references (leaves 42-47).Abstract also in Chinese.Chapter 1 --- Introduction --- p.1Chapter 2 --- Related Work --- p.5Chapter 2.1 --- Line labeling and realization problem --- p.5Chapter 2.2 --- 3D reconstruction from multiple views --- p.6Chapter 2.3 --- 3D reconstruction from single line drawings --- p.7Chapter 2.3.1 --- Face identification from the line drawings --- p.7Chapter 2.3.2 --- 3D geometry reconstruction --- p.9Chapter 2.4 --- Our research topic and contributions --- p.13Chapter 3 --- Reconstruction of Curved Manifold Objects --- p.14Chapter 3.1 --- Assumptions and terminology --- p.14Chapter 3.2 --- Reconstruction of curved manifold objects --- p.17Chapter 3.2.1 --- Distinguishing between curved and planar faces --- p.17Chapter 3.2.2 --- Transformation of Line Drawings --- p.20Chapter 3.2.3 --- Regularities --- p.23Chapter 3.2.4 --- 3D Wireframe Reconstruction --- p.26Chapter 3.2.5 --- Generating Curved Faces --- p.28Chapter 3.2.6 --- The Complete 3D Reconstruction Algorithm --- p.33Chapter 4 --- Experiments --- p.35Chapter 5 --- Conclusions and Future Work --- p.40Chapter 5.1 --- Conclusions --- p.40Chapter 5.2 --- Future work --- p.40Bibliography --- p.4

    3D Shape Reconstruction from Sketches via Multi-view Convolutional Networks

    Full text link
    We propose a method for reconstructing 3D shapes from 2D sketches in the form of line drawings. Our method takes as input a single sketch, or multiple sketches, and outputs a dense point cloud representing a 3D reconstruction of the input sketch(es). The point cloud is then converted into a polygon mesh. At the heart of our method lies a deep, encoder-decoder network. The encoder converts the sketch into a compact representation encoding shape information. The decoder converts this representation into depth and normal maps capturing the underlying surface from several output viewpoints. The multi-view maps are then consolidated into a 3D point cloud by solving an optimization problem that fuses depth and normals across all viewpoints. Based on our experiments, compared to other methods, such as volumetric networks, our architecture offers several advantages, including more faithful reconstruction, higher output surface resolution, better preservation of topology and shape structure.Comment: 3DV 2017 (oral

    Parameter optimization and learning for 3D object reconstruction from line drawings.

    Get PDF
    Du, Hao.Thesis (M.Phil.)--Chinese University of Hong Kong, 2010.Includes bibliographical references (p. 61).Abstracts in English and Chinese.Chapter 1 --- Introduction --- p.1Chapter 1.1 --- 3D Reconstruction from 2D Line Drawings and its Applications --- p.1Chapter 1.2 --- Algorithmic Development of 3D Reconstruction from 2D Line Drawings --- p.3Chapter 1.2.1 --- Line Labeling and Realization Problem --- p.4Chapter 1.2.2 --- 3D Reconstruction from Multiple Line Drawings --- p.5Chapter 1.2.3 --- 3D Reconstruction from a Single Line Drawing --- p.6Chapter 1.3 --- Research Problems and Our Contributions --- p.12Chapter 2 --- Adaptive Parameter Setting --- p.15Chapter 2.1 --- Regularities in Optimization-Based 3D Reconstruction --- p.15Chapter 2.1.1 --- Face Planarity --- p.18Chapter 2.1.2 --- Line Parallelism --- p.19Chapter 2.1.3 --- Line Verticality --- p.19Chapter 2.1.4 --- Isometry --- p.19Chapter 2.1.5 --- Corner Orthogonality --- p.20Chapter 2.1.6 --- Skewed Facial Orthogonality --- p.21Chapter 2.1.7 --- Skewed Facial Symmetry --- p.22Chapter 2.1.8 --- Line Orthogonality --- p.24Chapter 2.1.9 --- Minimum Standard Deviation of Angles --- p.24Chapter 2.1.10 --- Face Perpendicularity --- p.24Chapter 2.1.11 --- Line Collinearity --- p.25Chapter 2.1.12 --- Whole Symmetry --- p.25Chapter 2.2 --- Adaptive Parameter Setting in the Objective Function --- p.26Chapter 2.2.1 --- Hill-Climbing Optimization Technique --- p.28Chapter 2.2.2 --- Adaptive Weight Setting and its Explanations --- p.29Chapter 3 --- Parameter Learning --- p.33Chapter 3.1 --- Construction of A Large 3D Object Database --- p.33Chapter 3.2 --- Training Dataset Generation --- p.34Chapter 3.3 --- Parameter Learning Framework --- p.37Chapter 3.3.1 --- Evolutionary Algorithms --- p.38Chapter 3.3.2 --- Reconstruction Error Calculation --- p.39Chapter 3.3.3 --- Parameter Learning Algorithm --- p.41Chapter 4 --- Experimental Results --- p.45Chapter 4.1 --- Adaptive Parameter Setting --- p.45Chapter 4.1.1 --- Use Manually-Set Weights --- p.45Chapter 4.1.2 --- Learn the Best Weights with Different Strategies --- p.48Chapter 4.2 --- Evolutionary-Algorithm-Based Parameter Learning --- p.49Chapter 5 --- Conclusions and Future Work --- p.53Bibliography --- p.5

    Plane-Based Optimization for 3D Object Reconstruction from Single Line Drawings

    Full text link

    Algorithmic Perception of Vertices in Sketched Drawings of Polyhedral Shapes

    Get PDF
    In this article, visual perception principles were used to build an artificial perception model aimed at developing an algorithm for detecting junctions in line drawings of polyhedral objects that are vectorized from hand-drawn sketches. The detection is performed in two dimensions (2D), before any 3D model is available and minimal information about the shape depicted by the sketch is used. The goal of this approach is to not only detect junctions in careful sketches created by skilled engineers and designers but also detect junctions when skilled people draw casually to quickly convey rough ideas. Current approaches for extracting junctions from digital images are mostly incomplete, as they simply merge endpoints that are near each other, thus ignoring the fact that different vertices may be represented by different (but close) junctions and that the endpoints of lines that depict edges that share a common vertex may not necessarily be close to each other, particularly in quickly sketched drawings. We describe and validate a new algorithm that uses these perceptual findings to merge tips of line segments into 2D junctions that are assumed to depict 3D vertices
    • …
    corecore