1,990 research outputs found

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Effectiveness of Visualisations for Detection of Errors in Segmentation of Blood Vessels

    Get PDF
    Vascular disease diagnosis often requires a precise segmentation of the vessel lumen. When 3D (Magnetic Resonance Angiography, MRA, or Computed Tomography Angiography, CTA) imaging is available, this can be done automatically, but occasional errors are inevitable. So, the segmentation has to be checked by clinicians. This requires appropriate visualisation techniques. A number of visualisation techniques exist, but there has been little in the way of user studies that compare the different alternatives. In this study we examine how users interact with several basic visualisations, when performing a visual search task, checking vascular segmentation correctness of segmented MRA data. These visualisations are: direct volume rendering (DVR), isosurface rendering, and curved planar reformatting (CPR). Additionally, we examine if visual highlighting of potential errors can help the user find errors, so a fourth visualisation we examine is DVR with visual highlighting. Our main findings are that CPR performs fastest but has higher error rate, and there are no significant differences between the other three visualisations. We did find that visual highlighting actually has slower performance in early trials, suggesting that users learned to ignore them

    Neuroimage

    Get PDF
    ObjectivesThe lenticulostriate arteries (LSAs) with small diameters of a few hundred microns take origin directly from the high flow middle cerebral artery (MCA), making them especially susceptible to damage (e.g. by hypertension). This study aims to present high resolution (isotropic ~0.5 mm), black blood MRI for the visualization and characterization of LSAs at both 3T and 7T.Materials and MethodsT1-weighted 3D turbo spin-echo with variable flip angles (T1w TSE-VFA) sequences were optimized for the visualization of LSAs by performing extended phase graph (EPG) simulations. Twenty healthy volunteers (15 under 35 years old, 5 over 60 years old) were imaged with the T1w TSE-VFA sequences at both 3T and 7T. Contrast-to-noise ratio (CNR) was quantified, and LSAs were manually segmented using ITK-SNAP. Automated Reeb graph shape analysis was performed to extract features including vessel length and tortuosity. All quantitative metrics were compared between the two field strengths and two age groups using ANOVA.ResultsLSAs can be clearly delineated using optimized 3D T1w TSE-VFA at 3T and 7T, and a greater number of LSA branches can be detected compared to those by time-of-flight MR angiography (TOF MRA) at 7T. The CNR of LSAs was comparable between 7T and 3T. T1w TSE-VFA showed significantly higher CNR than TOF MRA at the stem portion of the LSAs branching off the medial middle cerebral artery. The mean vessel length and tortuosity were greater on TOF MRA compared to TSE-VFA. The number of detected LSAs by both TSE-VFA and TOF MRA was significantly reduced in aged subjects, while the mean vessel length measured on 7T TSE-VFA showed significant difference between the two age groups.ConclusionThe high-resolution black-blood 3D T1w TSE-VFA sequence offers a new method for the visualization and quantification of LSAs at both 3T and 7T, which may be applied for a number of pathological conditions related to the damage of LSAs.P41 EB015922/EB/NIBIB NIH HHS/United StatesUH2 NS100614/NS/NINDS NIH HHS/United StatesS10 OD025312/OD/NIH HHS/United StatesS10 OD025312/CD/ODCDC CDC HHS/United StatesK25 AG056594/AG/NIA NIH HHS/United StatesUH3 NS100614/NS/NINDS NIH HHS/United StatesP01 AG052350/AG/NIA NIH HHS/United States2020-10-01T00:00:00Z31158475PMC66889588401vault:3371

    MRI Visualization of Whole Brain Macro- and Microvascular Remodeling in a Rat Model of Ischemic Stroke: A Pilot Study

    Get PDF
    Using superparamagnetic iron oxide nanoparticles (SPION) as a single contrast agent, we investigated dual contrast cerebrovascular magnetic resonance imaging (MRI) for simultaneously monitoring macro- and microvasculature and their association with ischemic edema status (via apparent diffusion coefficient [ADC]) in transient middle cerebral artery occlusion (tMCAO) rat models. High-resolution T1-contrast based ultra-short echo time MR angiography (UTE-MRA) visualized size remodeling of pial arteries and veins whose mutual association with cortical ischemic edema status is rarely reported. ??R2?????R2*-MRI-derived vessel size index (VSI) and density indices (Q and MVD) mapped morphological changes of microvessels occurring in subcortical ischemic edema lesions. In cortical ischemic edema lesions, significantly dilated pial veins (p???=???0.0051) and thinned pial arteries (p???=???0.0096) of ipsilateral brains compared to those of contralateral brains were observed from UTE-MRAs. In subcortical regions, ischemic edema lesions had a significantly decreased Q and MVD values (p???<???0.001), as well as increased VSI values (p???<???0.001) than normal subcortical tissues in contralateral brains. This pilot study suggests that MR-based morphological vessel changes, including but not limited to venous blood vessels, are directly related to corresponding tissue edema status in ischemic stroke rat models

    Computational Simulations for Aortic Coarctation: Representative Results From a Sampling of Patients

    Get PDF
    Treatments for coarctation of the aorta (CoA) can alleviate blood pressure (BP) gradients(D), but long-term morbidity still exists that can be explained by altered indices of hemodynamics and biomechanics. We introduce a technique to increase our understanding of these indices for CoA under resting and nonresting conditions, quantify their contribution to morbidity, and evaluate treatment options. Patient-specific computational fluid dynamics (CFD) models were created from imaging and BP data for one normal and four CoA patients (moderate native CoA: D12 mmHg, severe native CoA: D25 mmHg and postoperative end-to-end and end-to-side patients: D0 mmHg). Simulations incorporated vessel deformation, downstream vascular resistance and compliance. Indices including cyclic strain, time-averaged wall shear stress (TAWSS), and oscillatory shear index (OSI) were quantified. Simulations replicated resting BP and blood flow data. BP during simulated exercise for the normal patient matched reported values. Greatest exercise-induced increases in systolic BP and mean and peak DBP occurred for the moderate native CoA patient (SBP: 115 to 154 mmHg; mean and peak DBP: 31 and 73 mmHg). Cyclic strain was elevated proximal to the coarctation for native CoA patients, but reduced throughout the aorta after treatment. A greater percentage of vessels was exposed to subnormal TAWSS or elevated OSI for CoA patients. Local patterns of these indices reported to correlate with atherosclerosis in normal patients were accentuated by CoA. These results apply CFD to a range of CoA patients for the first time and provide the foundation for future progress in this area

    Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phase contrast cardiovascular magnetic resonance (CMR) is able to measure all three directional components of the velocities of blood flow relative to the three spatial dimensions and the time course of the heart cycle. In this article, methods used for the acquisition, visualization, and quantification of such datasets are reviewed and illustrated.</p> <p>Methods</p> <p>Currently, the acquisition of 3D cine (4D) phase contrast velocity data, synchronized relative to both cardiac and respiratory movements takes about ten minutes or more, even when using parallel imaging and optimized pulse sequence design. The large resulting datasets need appropriate post processing for the visualization of multidirectional flow, for example as vector fields, pathlines or streamlines, or for retrospective volumetric quantification.</p> <p>Applications</p> <p>Multidirectional velocity acquisitions have provided 3D visualization of large scale flow features of the healthy heart and great vessels, and have shown altered patterns of flow in abnormal chambers and vessels. Clinically relevant examples include retrograde streams in atheromatous descending aortas as potential thrombo-embolic pathways in patients with cryptogenic stroke and marked variations of flow visualized in common aortic pathologies. Compared to standard clinical tools, 4D velocity mapping offers the potential for retrospective quantification of flow and other hemodynamic parameters.</p> <p>Conclusions</p> <p>Multidirectional, 3D cine velocity acquisitions are contributing to the understanding of normal and pathologically altered blood flow features. Although more rapid and user-friendly strategies for acquisition and analysis may be needed before 4D velocity acquisitions come to be adopted in routine clinical CMR, their capacity to measure multidirectional flows throughout a study volume has contributed novel insights into cardiovascular fluid dynamics in health and disease.</p

    A novel MRA-based framework for the detection of changes in cerebrovascular blood pressure.

    Get PDF
    Background: High blood pressure (HBP) affects 75 million adults and is the primary or contributing cause of mortality in 410,000 adults each year in the United States. Chronic HBP leads to cerebrovascular changes and is a significant contributor for strokes, dementia, and cognitive impairment. Non-invasive measurement of changes in cerebral vasculature and blood pressure (BP) may enable physicians to optimally treat HBP patients. This manuscript describes a method to non-invasively quantify changes in cerebral vasculature and BP using Magnetic Resonance Angiography (MRA) imaging. Methods: MRA images and BP measurements were obtained from patients (n=15, M=8, F=7, Age= 49.2 ± 7.3 years) over a span of 700 days. A novel segmentation algorithm was developed to identify brain vasculature from surrounding tissue. The data was processed to calculate the vascular probability distribution function (PDF); a measure of the vascular diameters in the brain. The initial (day 0) PDF and final (day 700) PDF were used to correlate the changes in cerebral vasculature and BP. Correlation was determined by a mixed effects linear model analysis. Results: The segmentation algorithm had a 99.9% specificity and 99.7% sensitivity in identifying and delineating cerebral vasculature. The PDFs had a statistically significant correlation to BP changes below the circle of Willis (p-value = 0.0007), but not significant (p-value = 0.53) above the circle of Willis, due to smaller blood vessels. Conclusion: Changes in cerebral vasculature and pressure can be non-invasively obtained through MRA image analysis, which may be a useful tool for clinicians to optimize medical management of HBP

    NONINVASIVE IMAGING OF BRAIN VASCULATURE WITH HIGH RESOLUTION BLOOD OXYGENATION LEVEL-DEPENDENT VENOGRAPHY IN MAGNETIC RESONANCE IMAGING: APPLICATIONS TO FUNCTIONAL AND CLINICAL STUDIES

    Get PDF
    BOLD techniques have been used in a vast range of applications including functional MRI (fMRI) and clinical MR venography of brain vasculature. Despite the immense success of BOLD fMRI applications, our understanding of complex neuronal and hemodynamic processes associated with BOLD techniques is limited. An experimental investigation with BOLD MR venography may allow us to expand our knowledge in hemodynamic process involved in BOLD fMRI. BOLD techniques are also clinically useful. In clinical brain imaging studies, imaging both time-of-flight (TOF) MR angiogram (MRA) and BOLD MR venogram (MRV) is often desirable, because they complement the depiction of vascular pathologies. Nevertheless, MRV is usually not acquired to minimize the image acquisition time. It will be highly beneficial if we can acquire MRV while imaging MRA without increasing scan time. Thus, the objective of our study was to develop and assess BOLD MRV techniques for both functional and clinical applications. For the experimental evaluation of BOLD MRV, we used a rat brain model at 9.4T. The scan condition for BOLD MRV was optimized and the venous origin of hypointense vasculature was investigated with modulation of oxygenation. Detailed venules of ˜16-30μm diameter were detected in the resulting in vivo images with 78μm isotropic scan resolution, verified with in vivo two-photon microscopy and computer simulation data. Activation foci of high-resolution BOLD fMRI maps were correlated with relatively large intracortical veins detected with high-resolution BOLD MRV, indicating that detectability of conventional BOLD fMRI is limited by density of these intracortical veins (˜1.5 vessels/mm²). For the clinical application of BOLD MRV, we developed and tested a compatible dual-echo arteriovenography (CODEA) technique for simultaneous acquisition of TOF MRA and BOLD MRV at a 3T human system. Image quality of the CODEA technique acquired in a single session was comparable to conventional TOF MRA and BOLD MRV separately acquired in two sessions. The CODEA technique was applied to chronic stroke studies. Detailed vascular structures including arterial occlusions and venous abnormalities were depicted. The CODEA technique appears valuable to other clinical applications, particularly for those requiring efficient MRA/MRV imaging with limited scan time such as acute stroke studies
    corecore