1,391 research outputs found

    The status of textile-based dry EEG electrodes

    Get PDF
    Electroencephalogram (EEG) is the biopotential recording of electrical signals generated by brain activity. It is useful for monitoring sleep quality and alertness, clinical applications, diagnosis, and treatment of patients with epilepsy, disease of Parkinson and other neurological disorders, as well as continuous monitoring of tiredness/ alertness in the field. We provide a review of textile-based EEG. Most of the developed textile-based EEGs remain on shelves only as published research results due to a limitation of flexibility, stickability, and washability, although the respective authors of the works reported that signals were obtained comparable to standard EEG. In addition, nearly all published works were not quantitatively compared and contrasted with conventional wet electrodes to prove feasibility for the actual application. This scenario would probably continue to give a publication credit, but does not add to the growth of the specific field, unless otherwise new integration approaches and new conductive polymer composites are evolved to make the application of textile-based EEG happen for bio-potential monitoring

    TOBE: Tangible Out-of-Body Experience

    Get PDF
    We propose a toolkit for creating Tangible Out-of-Body Experiences: exposing the inner states of users using physiological signals such as heart rate or brain activity. Tobe can take the form of a tangible avatar displaying live physiological readings to reflect on ourselves and others. Such a toolkit could be used by researchers and designers to create a multitude of potential tangible applications, including (but not limited to) educational tools about Science Technologies Engineering and Mathematics (STEM) and cognitive science, medical applications or entertainment and social experiences with one or several users or Tobes involved. Through a co-design approach, we investigated how everyday people picture their physiology and we validated the acceptability of Tobe in a scientific museum. We also give a practical example where two users relax together, with insights on how Tobe helped them to synchronize their signals and share a moment

    A real-time noise cancelling EEG electrode employing Deep Learning

    Get PDF
    Two major problems of head worn electroencephalogram (EEG) are muscle and eye-blink artefacts, in particular in non-clinical environments while performing everyday tasks. Current artefact removal techniques such as principle component analysis (PCA) or independent component analysis (ICA) take signals from a high number of electrodes and separate the noise from the signal by processing them offline in a computationally expensive and slow way. In contrast, we present a smart compound electrode which is able to learn in real-time to remove artefacts. The smart 3D printed electrode consists of a central electrode and a ring electrode where poly-lactate acid (PLA) was used for the the base and Ag/AgCl for the conductive parts allowing standard manufacturing processes. A new deep learning algorithm then learns continuously to remove both eye-blink and muscle artefacts which combines the real-time capabilities of adaptive filters with the power of deep neural networks. The electrode setup together with the deep learning algorithm increases the signal to noise ratio of the EEG in average by 20 dB. Our approach offers a simple 3D printed design in combination with a real-time algorithm which can be integrated into the electrode itself. This electrode has the potential to provide high quality EEG in non-clinical and consumer applications, such as sleep monitoring and brain-computer interface (BCI).Comment: 12 pages, 4 figures, code available under http://doi.org/10.5281/zenodo.413110

    Soft, comfortable polymer dry electrodes for high quality ECG and EEG recording

    Get PDF
    Conventional gel electrodes are widely used for biopotential measurements, despite important drawbacks such as skin irritation, long set-up time and uncomfortable removal. Recently introduced dry electrodes with rigid metal pins overcome most of these problems; however, their rigidity causes discomfort and pain. This paper presents dry electrodes offering high user comfort, since they are fabricated from EPDM rubber containing various additives for optimum conductivity, flexibility and ease of fabrication. The electrode impedance is measured on phantoms and human skin. After optimization of the polymer composition, the skin-electrode impedance is only similar to 10 times larger than that of gel electrodes. Therefore, these electrodes are directly capable of recording strong biopotential signals such as ECG while for low-amplitude signals such as EEG, the electrodes need to be coupled with an active circuit. EEG recordings using active polymer electrodes connected to a clinical EEG system show very promising results: alpha waves can be clearly observed when subjects close their eyes, and correlation and coherence analyses reveal high similarity between dry and gel electrode signals. Moreover, all subjects reported that our polymer electrodes did not cause discomfort. Hence, the polymer-based dry electrodes are promising alternatives to either rigid dry electrodes or conventional gel electrodes

    Monitoring Cognitive Load with 3D-Printed EEG Headphones

    Get PDF
    Real-world cognitive load monitoring promises to be an essential foundation for positive adaptive information systems that foster knowledge workers’ productivity and well- being. Towards this goal, our research combines established EEG load monitoring principles with low-cost, 3D-printed headphones. This provides a means for continuous, unobtrusive, and real-time cognitive load detection. Results from two experiments document strong relationships of cognitive load reports with EEG frequency bands (Theta and Alpha), both around the ears and on top of the head. While limitations with Theta band power sensitivity are observed, Alpha band modulations are robust across sessions, task repetitions, and three tasks. Furthermore, short setup durations are found, and only minimal influences of hairstyle or glasses on setup times and load relationships. With a discussion of the remaining challenges for more naturalistic studies, this article documents the system’s future potential for load sensing during knowledge work

    NeuroGen: EEG AND Near-Infrared Light Stimulation Device

    Get PDF
    Neurodegenerative diseases such as Alzheimer’s, Dementia, and Parkinson’s affect hundreds of millions of people across the nation and world each year. While medications targeting disease pathways have often resulted in debilitating side effects, neurodegenerative diseases may be targeted by common pathways that promote healing of tissues via reduced inflammation, increased perfusion, and increased energy production. Photobiomodulation (PBM) targets all of these physiological processes with non-invasive near infra-red light stimulation and for this application the treatment will be applied to the head. Transcranial PBM has been used to effectively treat neurodegenerative diseases with improved cognitive and motor control outcomes. PBM applied to the brain causes detectable changes in brain activity, measured by electroencephalography (EEG). However, no tool exists to simultaneously implement PBM and EEG. Thus, the goal of this project was to design and prototype a hybrid PBM and EEG device. This report was created for the mechanical subsection of this project, which focuses on the integration of the EEG sensors, LED arrays, and cooling system, as well as the overall design of the helmet. The team was successfully able to create an effective cooling system through the utilization of heatsinks on the LED boards and fans attached to the OpenBCI helmet. The team was also able to successfully design and 3D print LED arrays to uniquely fit into the OpenBCI helmet, as well as a helmet shell cover. These designs allowed for the successful and safe integration of photobiomodulation into the EEG device

    Dry EEG Electrodes

    Get PDF
    Electroencephalography (EEG) emerged in the second decade of the 20th century as a technique for recording the neurophysiological response. Since then, there has been little variation in the physical principles that sustain the signal acquisition probes, otherwise called electrodes. Currently, new advances in technology have brought new unexpected fields of applications apart from the clinical, for which new aspects such as usability and gel-free operation are first order priorities. Thanks to new advances in materials and integrated electronic systems technologies, a new generation of dry electrodes has been developed to fulfill the need. In this manuscript, we review current approaches to develop dry EEG electrodes for clinical and other applications, including information about measurement methods and evaluation reports. We conclude that, although a broad and non-homogeneous diversity of approaches has been evaluated without a consensus in procedures and methodology, their performances are not far from those obtained with wet electrodes, which are considered the gold standard, thus enabling the former to be a useful tool in a variety of novel applications.This work was supported by Nicolo Association for the R+D+i in Neurotechnologies for disability, the research project P11-TIC-7983, Junta of Andalucia (Spain) and the Spanish National Grant TIN2012-32030, co-financed by the European Regional Development Fund (ERDF). We also thank Erik Jung, head of the Medical Microsystems working group, at the Department of System Integration & Interconnection Technologies, Fraunhofer IZM (Berlin), for his support

    The Arch electrode: a novel dry electrode concept for improved wearing comfort

    Get PDF
    Electroencephalography (EEG) is increasingly used for repetitive and prolonged applications like neurofeedback, brain computer interfacing, and long-term intermittent monitoring. Dry-contact electrodes enable rapid self-application. A common drawback of existing dry electrodes is the limited wearing comfort during prolonged application. We propose a novel dry Arch electrode. Five semi-circular arches are arranged parallelly on a common baseplate. The electrode substrate material is a flexible thermoplastic polyurethane (TPU) produced by additive manufacturing. A chemical coating of Silver/Silver-Chloride (Ag/AgCl) is applied by electroless plating using a novel surface functionalization method. Arch electrodes were manufactured and validated in terms of mechanical durability, electrochemical stability, in vivo applicability, and signal characteristics. We compare the results of the dry arch electrodes with dry pin-shaped and conventional gel-based electrodes. 21-channel EEG recordings were acquired on 10 male and 5 female volunteers. The tests included resting state EEG, alpha activity, and a visual evoked potential. Wearing comfort was rated by the subjects directly after application, as well as at 30 min and 60 min of wearing. Our results show that the novel plating technique provides a well-adhering electrically conductive and electrochemically stable coating, withstanding repetitive strain and bending tests. The signal quality of the Arch electrodes is comparable to pin-shaped dry electrodes. The average channel reliability of the Arch electrode setup was 91.9 ± 9.5%. No considerable differences in signal characteristics have been observed for the gel-based, dry pin-shaped, and arch-shaped electrodes after the identification and exclusion of bad channels. The comfort was improved in comparison to pin-shaped electrodes and enabled applications of over 60 min duration. Arch electrodes required individual adaptation of the electrodes to the orientation and hairstyle of the volunteers. This initial preparation time of the 21-channel cap increased from an average of 5 min for pin-like electrodes to 15 min for Arch electrodes and 22 min for gel-based electrodes. However, when re-applying the arch electrode cap on the same volunteer, preparation times of pin-shaped and arch-shaped electrodes were comparable. In summary, our results indicate the applicability of the novel Arch electrode and coating for EEG acquisition. The novel electrode enables increased comfort for prolonged dry-contact measurement

    Fully portable and wireless universal brain-machine interfaces enabled by flexible scalp electronics and deep-learning algorithm

    Get PDF
    Variation in human brains creates difficulty in implementing electroencephalography (EEG) into universal brain-machine interfaces (BMI). Conventional EEG systems typically suffer from motion artifacts, extensive preparation time, and bulky equipment, while existing EEG classification methods require training on a per-subject or per-session basis. Here, we introduce a fully portable, wireless, flexible scalp electronic system, incorporating a set of dry electrodes and flexible membrane circuit. Time domain analysis using convolutional neural networks allows for an accurate, real-time classification of steady-state visually evoked potentials on the occipital lobe. Simultaneous comparison of EEG signals with two commercial systems captures the improved performance of the flexible electronics with significant reduction of noise and electromagnetic interference. The two-channel scalp electronic system achieves a high information transfer rate (122.1 ± 3.53 bits per minute) with six human subjects, allowing for a wireless, real-time, universal EEG classification for an electronic wheelchair, motorized vehicle, and keyboard-less presentation
    • 

    corecore