15,764 research outputs found

    A One Stop 3D Target Reconstruction and multilevel Segmentation Method

    Full text link
    3D object reconstruction and multilevel segmentation are fundamental to computer vision research. Existing algorithms usually perform 3D scene reconstruction and target objects segmentation independently, and the performance is not fully guaranteed due to the challenge of the 3D segmentation. Here we propose an open-source one stop 3D target reconstruction and multilevel segmentation framework (OSTRA), which performs segmentation on 2D images, tracks multiple instances with segmentation labels in the image sequence, and then reconstructs labelled 3D objects or multiple parts with Multi-View Stereo (MVS) or RGBD-based 3D reconstruction methods. We extend object tracking and 3D reconstruction algorithms to support continuous segmentation labels to leverage the advances in the 2D image segmentation, especially the Segment-Anything Model (SAM) which uses the pretrained neural network without additional training for new scenes, for 3D object segmentation. OSTRA supports most popular 3D object models including point cloud, mesh and voxel, and achieves high performance for semantic segmentation, instance segmentation and part segmentation on several 3D datasets. It even surpasses the manual segmentation in scenes with complex structures and occlusions. Our method opens up a new avenue for reconstructing 3D targets embedded with rich multi-scale segmentation information in complex scenes. OSTRA is available from https://github.com/ganlab/OSTRA

    General Dynamic Scene Reconstruction from Multiple View Video

    Get PDF
    This paper introduces a general approach to dynamic scene reconstruction from multiple moving cameras without prior knowledge or limiting constraints on the scene structure, appearance, or illumination. Existing techniques for dynamic scene reconstruction from multiple wide-baseline camera views primarily focus on accurate reconstruction in controlled environments, where the cameras are fixed and calibrated and background is known. These approaches are not robust for general dynamic scenes captured with sparse moving cameras. Previous approaches for outdoor dynamic scene reconstruction assume prior knowledge of the static background appearance and structure. The primary contributions of this paper are twofold: an automatic method for initial coarse dynamic scene segmentation and reconstruction without prior knowledge of background appearance or structure; and a general robust approach for joint segmentation refinement and dense reconstruction of dynamic scenes from multiple wide-baseline static or moving cameras. Evaluation is performed on a variety of indoor and outdoor scenes with cluttered backgrounds and multiple dynamic non-rigid objects such as people. Comparison with state-of-the-art approaches demonstrates improved accuracy in both multiple view segmentation and dense reconstruction. The proposed approach also eliminates the requirement for prior knowledge of scene structure and appearance

    Dynamic Body VSLAM with Semantic Constraints

    Full text link
    Image based reconstruction of urban environments is a challenging problem that deals with optimization of large number of variables, and has several sources of errors like the presence of dynamic objects. Since most large scale approaches make the assumption of observing static scenes, dynamic objects are relegated to the noise modeling section of such systems. This is an approach of convenience since the RANSAC based framework used to compute most multiview geometric quantities for static scenes naturally confine dynamic objects to the class of outlier measurements. However, reconstructing dynamic objects along with the static environment helps us get a complete picture of an urban environment. Such understanding can then be used for important robotic tasks like path planning for autonomous navigation, obstacle tracking and avoidance, and other areas. In this paper, we propose a system for robust SLAM that works in both static and dynamic environments. To overcome the challenge of dynamic objects in the scene, we propose a new model to incorporate semantic constraints into the reconstruction algorithm. While some of these constraints are based on multi-layered dense CRFs trained over appearance as well as motion cues, other proposed constraints can be expressed as additional terms in the bundle adjustment optimization process that does iterative refinement of 3D structure and camera / object motion trajectories. We show results on the challenging KITTI urban dataset for accuracy of motion segmentation and reconstruction of the trajectory and shape of moving objects relative to ground truth. We are able to show average relative error reduction by a significant amount for moving object trajectory reconstruction relative to state-of-the-art methods like VISO 2, as well as standard bundle adjustment algorithms
    • …
    corecore