1,581 research outputs found

    Deep Network Uncertainty Maps for Indoor Navigation

    Full text link
    Most mobile robots for indoor use rely on 2D laser scanners for localization, mapping and navigation. These sensors, however, cannot detect transparent surfaces or measure the full occupancy of complex objects such as tables. Deep Neural Networks have recently been proposed to overcome this limitation by learning to estimate object occupancy. These estimates are nevertheless subject to uncertainty, making the evaluation of their confidence an important issue for these measures to be useful for autonomous navigation and mapping. In this work we approach the problem from two sides. First we discuss uncertainty estimation in deep models, proposing a solution based on a fully convolutional neural network. The proposed architecture is not restricted by the assumption that the uncertainty follows a Gaussian model, as in the case of many popular solutions for deep model uncertainty estimation, such as Monte-Carlo Dropout. We present results showing that uncertainty over obstacle distances is actually better modeled with a Laplace distribution. Then, we propose a novel approach to build maps based on Deep Neural Network uncertainty models. In particular, we present an algorithm to build a map that includes information over obstacle distance estimates while taking into account the level of uncertainty in each estimate. We show how the constructed map can be used to increase global navigation safety by planning trajectories which avoid areas of high uncertainty, enabling higher autonomy for mobile robots in indoor settings.Comment: Accepted for publication in "2019 IEEE-RAS International Conference on Humanoid Robots (Humanoids)

    TVL<sub>1</sub> Planarity Regularization for 3D Shape Approximation

    Get PDF
    The modern emergence of automation in many industries has given impetus to extensive research into mobile robotics. Novel perception technologies now enable cars to drive autonomously, tractors to till a field automatically and underwater robots to construct pipelines. An essential requirement to facilitate both perception and autonomous navigation is the analysis of the 3D environment using sensors like laser scanners or stereo cameras. 3D sensors generate a very large number of 3D data points when sampling object shapes within an environment, but crucially do not provide any intrinsic information about the environment which the robots operate within. This work focuses on the fundamental task of 3D shape reconstruction and modelling from 3D point clouds. The novelty lies in the representation of surfaces by algebraic functions having limited support, which enables the extraction of smooth consistent implicit shapes from noisy samples with a heterogeneous density. The minimization of total variation of second differential degree makes it possible to enforce planar surfaces which often occur in man-made environments. Applying the new technique means that less accurate, low-cost 3D sensors can be employed without sacrificing the 3D shape reconstruction accuracy

    Towards multiple 3D bone surface identification and reconstruction using few 2D X-ray images for intraoperative applications

    Get PDF
    This article discusses a possible method to use a small number, e.g. 5, of conventional 2D X-ray images to reconstruct multiple 3D bone surfaces intraoperatively. Each bone’s edge contours in X-ray images are automatically identified. Sparse 3D landmark points of each bone are automatically reconstructed by pairing the 2D X-ray images. The reconstructed landmark point distribution on a surface is approximately optimal covering main characteristics of the surface. A statistical shape model, dense point distribution model (DPDM), is then used to fit the reconstructed optimal landmarks vertices to reconstruct a full surface of each bone separately. The reconstructed surfaces can then be visualised and manipulated by surgeons or used by surgical robotic systems

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    Enhancing 3D Autonomous Navigation Through Obstacle Fields: Homogeneous Localisation and Mapping, with Obstacle-Aware Trajectory Optimisation

    Get PDF
    Small flying robots have numerous potential applications, from quadrotors for search and rescue, infrastructure inspection and package delivery to free-flying satellites for assistance activities inside a space station. To enable these applications, a key challenge is autonomous navigation in 3D, near obstacles on a power, mass and computation constrained platform. This challenge requires a robot to perform localisation, mapping, dynamics-aware trajectory planning and control. The current state-of-the-art uses separate algorithms for each component. Here, the aim is for a more homogeneous approach in the search for improved efficiencies and capabilities. First, an algorithm is described to perform Simultaneous Localisation And Mapping (SLAM) with physical, 3D map representation that can also be used to represent obstacles for trajectory planning: Non-Uniform Rational B-Spline (NURBS) surfaces. Termed NURBSLAM, this algorithm is shown to combine the typically separate tasks of localisation and obstacle mapping. Second, a trajectory optimisation algorithm is presented that produces dynamically-optimal trajectories with direct consideration of obstacles, providing a middle ground between path planners and trajectory smoothers. Called the Admissible Subspace TRajectory Optimiser (ASTRO), the algorithm can produce trajectories that are easier to track than the state-of-the-art for flight near obstacles, as shown in flight tests with quadrotors. For quadrotors to track trajectories, a critical component is the differential flatness transformation that links position and attitude controllers. Existing singularities in this transformation are analysed, solutions are proposed and are then demonstrated in flight tests. Finally, a combined system of NURBSLAM and ASTRO are brought together and tested against the state-of-the-art in a novel simulation environment to prove the concept that a single 3D representation can be used for localisation, mapping, and planning

    Haptic Control of Mobile Manipulators Interacting with the Environment

    Get PDF
    In the modern society the haptic control of robotic manipulators plays a central role in many industrial fields because of the improvement of human capabilities and the prevention of many hazards that it can provide. Many different studies are focusing on the improvement of the operator experience, aiming at simplifying the control interface and increasing the level of intuitiveness that the system can provide to a non-trained user. This work focus on the control of mobile manipulator platforms, that are gaining popularity in the industrial world because of their capability to merge the manipulation of the environment with a potentially infinite workspace. In particular three different aspects concerning the haptic shared control of mobile manipulators will be studied. Initially the manipulation of liquid container is analyzed and a new feed-forward filtering technique able to guarantee a slosh free motion without any a priori knowledge of the imposed trajectory is proposed. Then the trajectory planning for a mobile base in an unstructured environment is considered. A new planner based on the properties of B-spline curves is studied and tested for both the haptic and the autonomous case. Eventually the control of a mobile manipulator by means of a single commercial haptic device is addressed. A new mapping technique able to provide an intuitive interface for the control for the human operator is presented. The effectiveness of the proposed works is confirmed viaseveral experimental tests
    corecore