981 research outputs found

    Geometric modeling of non-rigid 3D shapes : theory and application to object recognition.

    Get PDF
    One of the major goals of computer vision is the development of flexible and efficient methods for shape representation. This is true, especially for non-rigid 3D shapes where a great variety of shapes are produced as a result of deformations of a non-rigid object. Modeling these non-rigid shapes is a very challenging problem. Being able to analyze the properties of such shapes and describe their behavior is the key issue in research. Also, considering photometric features can play an important role in many shape analysis applications, such as shape matching and correspondence because it contains rich information about the visual appearance of real objects. This new information (contained in photometric features) and its important applications add another, new dimension to the problem\u27s difficulty. Two main approaches have been adopted in the literature for shape modeling for the matching and retrieval problem, local and global approaches. Local matching is performed between sparse points or regions of the shape, while the global shape approaches similarity is measured among entire models. These methods have an underlying assumption that shapes are rigidly transformed. And Most descriptors proposed so far are confined to shape, that is, they analyze only geometric and/or topological properties of 3D models. A shape descriptor or model should be isometry invariant, scale invariant, be able to capture the fine details of the shape, computationally efficient, and have many other good properties. A shape descriptor or model is needed. This shape descriptor should be: able to deal with the non-rigid shape deformation, able to handle the scale variation problem with less sensitivity to noise, able to match shapes related to the same class even if these shapes have missing parts, and able to encode both the photometric, and geometric information in one descriptor. This dissertation will address the problem of 3D non-rigid shape representation and textured 3D non-rigid shapes based on local features. Two approaches will be proposed for non-rigid shape matching and retrieval based on Heat Kernel (HK), and Scale-Invariant Heat Kernel (SI-HK) and one approach for modeling textured 3D non-rigid shapes based on scale-invariant Weighted Heat Kernel Signature (WHKS). For the first approach, the Laplace-Beltrami eigenfunctions is used to detect a small number of critical points on the shape surface. Then a shape descriptor is formed based on the heat kernels at the detected critical points for different scales. Sparse representation is used to reduce the dimensionality of the calculated descriptor. The proposed descriptor is used for classification via the Collaborative Representation-based Classification with a Regularized Least Square (CRC-RLS) algorithm. The experimental results have shown that the proposed descriptor can achieve state-of-the-art results on two benchmark data sets. For the second approach, an improved method to introduce scale-invariance has been also proposed to avoid noise-sensitive operations in the original transformation method. Then a new 3D shape descriptor is formed based on the histograms of the scale-invariant HK for a number of critical points on the shape at different time scales. A Collaborative Classification (CC) scheme is then employed for object classification. The experimental results have shown that the proposed descriptor can achieve high performance on the two benchmark data sets. An important observation from the experiments is that the proposed approach is more able to handle data under several distortion scenarios (noise, shot-noise, scale, and under missing parts) than the well-known approaches. For modeling textured 3D non-rigid shapes, this dissertation introduces, for the first time, a mathematical framework for the diffusion geometry on textured shapes. This dissertation presents an approach for shape matching and retrieval based on a weighted heat kernel signature. It shows how to include photometric information as a weight over the shape manifold, and it also propose a novel formulation for heat diffusion over weighted manifolds. Then this dissertation presents a new discretization method for the weighted heat kernel induced by the linear FEM weights. Finally, the weighted heat kernel signature is used as a shape descriptor. The proposed descriptor encodes both the photometric, and geometric information based on the solution of one equation. Finally, this dissertation proposes an approach for 3D face recognition based on the front contours of heat propagation over the face surface. The front contours are extracted automatically as heat is propagating starting from a detected set of landmarks. The propagation contours are used to successfully discriminate the various faces. The proposed approach is evaluated on the largest publicly available database of 3D facial images and successfully compared to the state-of-the-art approaches in the literature. This work can be extended to the problem of dense correspondence between non-rigid shapes. The proposed approaches with the properties of the Laplace-Beltrami eigenfunction can be utilized for 3D mesh segmentation. Another possible application of the proposed approach is the view point selection for 3D objects by selecting the most informative views that collectively provide the most descriptive presentation of the surface

    Geometric deep learning: going beyond Euclidean data

    Get PDF
    Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them. Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field

    Computational Learning for Hand Pose Estimation

    Get PDF
    Rapid advances in human–computer interaction interfaces have been promising a realistic environment for gaming and entertainment in the last few years. However, the use of traditional input devices such as trackballs, keyboards, or joysticks has been a bottleneck for natural interactions between a human and computer as two points of freedom of these devices cannot suitably emulate the interactions in a three-dimensional space. Consequently, a comprehensive hand tracking technology is expected as a smart and intuitive option to these input tools to enhance virtual and augmented reality experiences. In addition, the recent emergence of low-cost depth sensing cameras has led to their broad use of RGB-D data in computer vision, raising expectations of a full 3D interpretation of hand movements for human–computer interaction interfaces. Although the use of hand gestures or hand postures has become essential for a wide range of applications in computer games and augmented/virtual reality, 3D hand pose estimation is still an open and challenging problem because of the following reasons: (i) the hand pose exists in a high-dimensional space because each finger and the palm is associated with several degrees of freedom, (ii) the fingers exhibit self-similarity and often occlude to each other, (iii) global 3D rotations make pose estimation more difficult, and (iv) hands only exist in few pixels in images and the noise in acquired data coupled with fast finger movement confounds continuous hand tracking. The success of hand tracking would naturally depend on synthesizing our knowledge of the hand (i.e., geometric shape, constraints on pose configurations) and latent features about hand poses from the RGB-D data stream (i.e., region of interest, key feature points like finger tips and joints, and temporal continuity). In this thesis, we propose novel methods to leverage the paradigm of analysis by synthesis and create a prediction model using a population of realistic 3D hand poses. The overall goal of this work is to design a concrete framework so the computers can learn and understand about perceptual attributes of human hands (i.e., self-occlusions or self-similarities of the fingers) and to develop a pragmatic solution to the real-time hand pose estimation problem implementable on a standard computer. This thesis can be broadly divided into four parts: learning hand (i) from recommendiations of similar hand poses, (ii) from low-dimensional visual representations, (iii) by hallucinating geometric representations, and (iv) from a manipulating object. Each research work covers our algorithmic contributions to solve the 3D hand pose estimation problem. Additionally, the research work in the appendix proposes a pragmatic technique for applying our ideas to mobile devices with low computational power. Following a given structure, we first overview the most relevant works on depth sensor-based 3D hand pose estimation in the literature both with and without manipulating an object. Two different approaches prevalent for categorizing hand pose estimation, model-based methods and appearance-based methods, are discussed in detail. In this chapter, we also introduce some works relevant to deep learning and trials to achieve efficient compression of the network structure. Next, we describe a synthetic 3D hand model and its motion constraints for simulating realistic human hand movements. The section for the primary research work starts in the following chapter. We discuss our attempts to produce a better estimation model for 3D hand pose estimation by learning hand articulations from recommendations of similar poses. Specifically, the unknown pose parameters for input depth data are estimated by collaboratively learning the known parameters of all neighborhood poses. Subsequently, we discuss deep-learned, discriminative, and low-dimensional features and a hierarchical solution of the stated problem based on the matrix completion framework. This work is further extended by incorporating a function of geometric properties on the surface of the hand described by heat diffusion, which is robust to capture both the local geometry of the hand and global structural representations. The problem of the hands interactions with a physical object is also considered in the following chapter. The main insight is that the interacting object can be a source of constraint on hand poses. In this view, we employ pose dependency on the shape of the object to learn the discriminative features of the hand–object interaction, rather than losing hand information caused by partial or full object occlusions. Subsequently, we present a compressive learning technique in the appendix. Our approach is flexible, enabling us to add more layers and go deeper in the deep learning architecture while keeping the number of parameters the same. Finally, we conclude this thesis work by summarizing the presented approaches for hand pose estimation and then propose future directions to further achieve performance improvements through (i) realistically rendered synthetic hand images, (ii) incorporating RGB images as an input, (iii) hand perseonalization, (iv) use of unstructured point cloud, and (v) embedding sensing techniques

    Physics based supervised and unsupervised learning of graph structure

    Get PDF
    Graphs are central tools to aid our understanding of biological, physical, and social systems. Graphs also play a key role in representing and understanding the visual world around us, 3D-shapes and 2D-images alike. In this dissertation, I propose the use of physical or natural phenomenon to understand graph structure. I investigate four phenomenon or laws in nature: (1) Brownian motion, (2) Gauss\u27s law, (3) feedback loops, and (3) neural synapses, to discover patterns in graphs

    Robust Temporally Coherent Laplacian Protrusion Segmentation of 3D Articulated Bodies

    Get PDF
    In motion analysis and understanding it is important to be able to fit a suitable model or structure to the temporal series of observed data, in order to describe motion patterns in a compact way, and to discriminate between them. In an unsupervised context, i.e., no prior model of the moving object(s) is available, such a structure has to be learned from the data in a bottom-up fashion. In recent times, volumetric approaches in which the motion is captured from a number of cameras and a voxel-set representation of the body is built from the camera views, have gained ground due to attractive features such as inherent view-invariance and robustness to occlusions. Automatic, unsupervised segmentation of moving bodies along entire sequences, in a temporally-coherent and robust way, has the potential to provide a means of constructing a bottom-up model of the moving body, and track motion cues that may be later exploited for motion classification. Spectral methods such as locally linear embedding (LLE) can be useful in this context, as they preserve "protrusions", i.e., high-curvature regions of the 3D volume, of articulated shapes, while improving their separation in a lower dimensional space, making them in this way easier to cluster. In this paper we therefore propose a spectral approach to unsupervised and temporally-coherent body-protrusion segmentation along time sequences. Volumetric shapes are clustered in an embedding space, clusters are propagated in time to ensure coherence, and merged or split to accommodate changes in the body's topology. Experiments on both synthetic and real sequences of dense voxel-set data are shown. This supports the ability of the proposed method to cluster body-parts consistently over time in a totally unsupervised fashion, its robustness to sampling density and shape quality, and its potential for bottom-up model constructionComment: 31 pages, 26 figure

    Grassmann Learning for Recognition and Classification

    Get PDF
    Computational performance associated with high-dimensional data is a common challenge for real-world classification and recognition systems. Subspace learning has received considerable attention as a means of finding an efficient low-dimensional representation that leads to better classification and efficient processing. A Grassmann manifold is a space that promotes smooth surfaces, where points represent subspaces and the relationship between points is defined by a mapping of an orthogonal matrix. Grassmann learning involves embedding high dimensional subspaces and kernelizing the embedding onto a projection space where distance computations can be effectively performed. In this dissertation, Grassmann learning and its benefits towards action classification and face recognition in terms of accuracy and performance are investigated and evaluated. Grassmannian Sparse Representation (GSR) and Grassmannian Spectral Regression (GRASP) are proposed as Grassmann inspired subspace learning algorithms. GSR is a novel subspace learning algorithm that combines the benefits of Grassmann manifolds with sparse representations using least squares loss §¤1-norm minimization for improved classification. GRASP is a novel subspace learning algorithm that leverages the benefits of Grassmann manifolds and Spectral Regression in a framework that supports high discrimination between classes and achieves computational benefits by using manifold modeling and avoiding eigen-decomposition. The effectiveness of GSR and GRASP is demonstrated for computationally intensive classification problems: (a) multi-view action classification using the IXMAS Multi-View dataset, the i3DPost Multi-View dataset, and the WVU Multi-View dataset, (b) 3D action classification using the MSRAction3D dataset and MSRGesture3D dataset, and (c) face recognition using the ATT Face Database, Labeled Faces in the Wild (LFW), and the Extended Yale Face Database B (YALE). Additional contributions include the definition of Motion History Surfaces (MHS) and Motion Depth Surfaces (MDS) as descriptors suitable for activity representations in video sequences and 3D depth sequences. An in-depth analysis of Grassmann metrics is applied on high dimensional data with different levels of noise and data distributions which reveals that standardized Grassmann kernels are favorable over geodesic metrics on a Grassmann manifold. Finally, an extensive performance analysis is made that supports Grassmann subspace learning as an effective approach for classification and recognition

    A Comprehensive Literature Review on Convolutional Neural Networks

    Get PDF
    The fields of computer vision and image processing from their initial days have been dealing with the problems of visual recognition. Convolutional Neural Networks (CNNs) in machine learning are deep architectures built as feed-forward neural networks or perceptrons, which are inspired by the research done in the fields of visual analysis by the visual cortex of mammals like cats. This work gives a detailed analysis of CNNs for the computer vision tasks, natural language processing, fundamental sciences and engineering problems along with other miscellaneous tasks. The general CNN structure along with its mathematical intuition and working, a brief critical commentary on the advantages and disadvantages, which leads researchers to search for alternatives to CNN’s are also mentioned. The paper also serves as an appreciation of the brain-child of past researchers for the existence of such a fecund architecture for handling multidimensional data and approaches to improve their performance further
    • …
    corecore