5,711 research outputs found

    3D Multimodal Interaction with Physically-based Virtual Environments

    Get PDF
    The virtual has become a huge field of exploration for researchers: it could assist the surgeon, help the prototyping of industrial objects, simulate natural phenomena, be a fantastic time machine or entertain users through games or movies. Far beyond the only visual rendering of the virtual environment, the Virtual Reality aims at -literally- immersing the user in the virtual world. VR technologies simulate digital environments with which users can interact and, as a result, perceive through different modalities the effects of their actions in real time. The challenges are huge: the user's motions need to be perceived and to have an immediate impact on the virtual world by modifying the objects in real-time. In addition, the targeted immersion of the user is not only visual: auditory or haptic feedback needs to be taken into account, merging all the sensory modalities of the user into a multimodal answer. The global objective of my research activities is to improve 3D interaction with complex virtual environments by proposing novel approaches for physically-based and multimodal interaction. I have laid the foundations of my work on designing the interactions with complex virtual worlds, referring to a higher demand in the characteristics of the virtual environments. My research could be described within three main research axes inherent to the 3D interaction loop: (1) the physically-based modeling of the virtual world to take into account the complexity of the virtual object behavior, their topology modifications as well as their interactions, (2) the multimodal feedback for combining the sensory modalities into a global answer from the virtual world to the user and (3) the design of body-based 3D interaction techniques and devices for establishing the interfaces between the user and the virtual world. All these contributions could be gathered in a general framework within the 3D interaction loop. By improving all the components of this framework, I aim at proposing approaches that could be used in future virtual reality applications but also more generally in other areas such as medical simulation, gesture training, robotics, virtual prototyping for the industry or web contents.Le virtuel est devenu un vaste champ d'exploration pour la recherche et offre de nos jours de nombreuses possibilitĂ©s : assister le chirurgien, rĂ©aliser des prototypes de piĂšces industrielles, simuler des phĂ©nomĂšnes naturels, remonter dans le temps ou proposer des applications ludiques aux utilisateurs au travers de jeux ou de films. Bien plus que le rendu purement visuel d'environnement virtuel, la rĂ©alitĂ© virtuelle aspire Ă  -littĂ©ralement- immerger l'utilisateur dans le monde virtuel. L'utilisateur peut ainsi interagir avec le contenu numĂ©rique et percevoir les effets de ses actions au travers de diffĂ©rents retours sensoriels. Permettre une vĂ©ritable immersion de l'utilisateur dans des environnements virtuels de plus en plus complexes confronte la recherche en rĂ©alitĂ© virtuelle Ă  des dĂ©fis importants: les gestes de l'utilisateur doivent ĂȘtre capturĂ©s puis directement transmis au monde virtuel afin de le modifier en temps-rĂ©el. Les retours sensoriels ne sont pas uniquement visuels mais doivent ĂȘtre combinĂ©s avec les retours auditifs ou haptiques dans une rĂ©ponse globale multimodale. L'objectif principal de mes activitĂ©s de recherche consiste Ă  amĂ©liorer l'interaction 3D avec des environnements virtuels complexes en proposant de nouvelles approches utilisant la simulation physique et exploitant au mieux les diffĂ©rentes modalitĂ©s sensorielles. Dans mes travaux, je m'intĂ©resse tout particuliĂšrement Ă  concevoir des interactions avec des mondes virtuels complexes. Mon approche peut ĂȘtre dĂ©crite au travers de trois axes principaux de recherche: (1) la modĂ©lisation dans les mondes virtuels d'environnements physiques plausibles oĂč les objets rĂ©agissent de maniĂšre naturelle, mĂȘme lorsque leur topologie est modifiĂ©e ou lorsqu'ils sont en interaction avec d'autres objets, (2) la mise en place de retours sensoriels multimodaux vers l'utilisateur intĂ©grant des composantes visuelles, haptiques et/ou sonores, (3) la prise en compte de l'interaction physique de l'utilisateur avec le monde virtuel dans toute sa richesse : mouvements de la tĂȘte, des deux mains, des doigts, des jambes, voire de tout le corps, en concevant de nouveaux dispositifs ou de nouvelles techniques d'interactions 3D. Les diffĂ©rentes contributions que j'ai proposĂ©es dans chacun de ces trois axes peuvent ĂȘtre regroupĂ©es au sein d'un cadre plus gĂ©nĂ©ral englobant toute la boucle d'interaction 3D avec les environnements virtuels. Elles ouvrent des perspectives pour de futures applications en rĂ©alitĂ© virtuelle mais Ă©galement plus gĂ©nĂ©ralement dans d'autres domaines tels que la simulation mĂ©dicale, l'apprentissage de gestes, la robotique, le prototypage virtuel pour l'industrie ou bien les contenus web

    Mixed reality participants in smart meeting rooms and smart home enviroments

    Get PDF
    Human–computer interaction requires modeling of the user. A user profile typically contains preferences, interests, characteristics, and interaction behavior. However, in its multimodal interaction with a smart environment the user displays characteristics that show how the user, not necessarily consciously, verbally and nonverbally provides the smart environment with useful input and feedback. Especially in ambient intelligence environments we encounter situations where the environment supports interaction between the environment, smart objects (e.g., mobile robots, smart furniture) and human participants in the environment. Therefore it is useful for the profile to contain a physical representation of the user obtained by multi-modal capturing techniques. We discuss the modeling and simulation of interacting participants in a virtual meeting room, we discuss how remote meeting participants can take part in meeting activities and they have some observations on translating research results to smart home environments

    Ambient Gestures

    No full text
    We present Ambient Gestures, a novel gesture-based system designed to support ubiquitous ‘in the environment’ interactions with everyday computing technology. Hand gestures and audio feedback allow users to control computer applications without reliance on a graphical user interface, and without having to switch from the context of a non-computer task to the context of the computer. The Ambient Gestures system is composed of a vision recognition software application, a set of gestures to be processed by a scripting application and a navigation and selection application that is controlled by the gestures. This system allows us to explore gestures as the primary means of interaction within a multimodal, multimedia environment. In this paper we describe the Ambient Gestures system, define the gestures and the interactions that can be achieved in this environment and present a formative study of the system. We conclude with a discussion of our findings and future applications of Ambient Gestures in ubiquitous computing

    Towards Simulating Humans in Augmented Multi-party Interaction

    Get PDF
    Human-computer interaction requires modeling of the user. A user profile typically contains preferences, interests, characteristics, and interaction behavior. However, in its multimodal interaction with a smart environment the user displays characteristics that show how the user, not necessarily consciously, verbally and nonverbally provides the smart environment with useful input and feedback. Especially in ambient intelligence environments we encounter situations where the environment supports interaction between the environment, smart objects (e.g., mobile robots, smart furniture) and human participants in the environment. Therefore it is useful for the profile to contain a physical representation of the user obtained by multi-modal capturing techniques. We discuss the modeling and simulation of interacting participants in the European AMI research project

    Piloting Multimodal Learning Analytics using Mobile Mixed Reality in Health Education

    Get PDF
    © 2019 IEEE. Mobile mixed reality has been shown to increase higher achievement and lower cognitive load within spatial disciplines. However, traditional methods of assessment restrict examiners ability to holistically assess spatial understanding. Multimodal learning analytics seeks to investigate how combinations of data types such as spatial data and traditional assessment can be combined to better understand both the learner and learning environment. This paper explores the pedagogical possibilities of a smartphone enabled mixed reality multimodal learning analytics case study for health education, focused on learning the anatomy of the heart. The context for this study is the first loop of a design based research study exploring the acquisition and retention of knowledge by piloting the proposed system with practicing health experts. Outcomes from the pilot study showed engagement and enthusiasm of the method among the experts, but also demonstrated problems to overcome in the pedagogical method before deployment with learners

    Collaboration in Augmented Reality: How to establish coordination and joint attention?

    Get PDF
    Schnier C, Pitsch K, Dierker A, Hermann T. Collaboration in Augmented Reality: How to establish coordination and joint attention? In: Boedker S, Bouvin NO, Lutters W, Wulf V, Ciolfi L, eds. Proceedings of the 12th European Conference on Computer Supported Cooperative Work (ECSCW 2011). Springer-Verlag London; 2011: 405-416.We present an initial investigation from a semi-experimental setting, in which an HMD-based AR-system has been used for real-time collaboration in a task-oriented scenario (design of a museum exhibition). Analysis points out the specific conditions of interacting in an AR environment and focuses on one particular practical problem for the participants in coordinating their interaction: how to establish joint attention towards the same object or referent. Analysis allows insights into how the pair of users begins to familarize with the environment, the limitations and opportunities of the setting and how they establish new routines for e.g. solving the ʻjoint attentionʌ-problem
    • 

    corecore