43 research outputs found

    Impact of Strain on the Performance of Si Nanowires Transistors at the Scaling Limit: A 3D Monte Carlo/2D Poisson Schrodinger Simulation Study

    Get PDF
    In this work we investigate the correlation between channel strain and device performance in various n-type Si-NWTs. We establish a correlation between strain, gate length and cross-section dimension of the transistors. For the purpose of this paper we simulate Si NWTs with a <110> channel orientation, four different ellipsoidal channel cross-sections and five gate lengths: 4nm, 6nm, 8nm, 10nm and 12nm. We have also analyzed the impact of strain on drain-induced barrier lowering (DIBL) and the subthreshold slope (SS). All simulations are based on a quantum mechanical description of the mobile charge distribution in the channel obtained from a 2D solution of the Schrödinger equation in multiple cross sections along the current path, which is mandatory for nanowires with such ultra-scale dimensions. The current transport along the channel is simulated using 3D Monte Carlo (MC) and drift-diffusion (DD) approaches

    Simulation study of scaling design, performance characterization, statistical variability and reliability of decananometer MOSFETs

    Get PDF
    This thesis describes a comprehensive, simulation based scaling study – including device design, performance characterization, and the impact of statistical variability – on deca-nanometer bulk MOSFETs. After careful calibration of fabrication processes and electrical characteristics for n- and p-MOSFETs with 35 nm physical gate length, 1 nm EOT and stress engineering, the simulated devices closely match the performance of contemporary 45 nm CMOS technologies. Scaling to 25 nm, 18 nm and 13 nm gate length n and p devices follows generalized scaling rules, augmented by physically realistic constraints and the introduction of high-k/metal-gate stacks. The scaled devices attain the performance stipulated by the ITRS. Device a.c. performance is analyzed, at device and circuit level. Extrinsic parasitics become critical to nano-CMOS device performance. The thesis describes device capacitance components, analyzes the CMOS inverter, and obtains new insights into the inverter propagation delay in nano-CMOS. The projection of a.c. performance of scaled devices is obtained. The statistical variability of electrical characteristics, due to intrinsic parameter fluctuation sources, in contemporary and scaled decananometer MOSFETs is systematically investigated for the first time. The statistical variability sources: random discrete dopants, gate line edge roughness and poly-silicon granularity are simulated, in combination, in an ensemble of microscopically different devices. An increasing trend in the standard deviation of the threshold voltage as a function of scaling is observed. The introduction of high-k/metal gates improves electrostatic integrity and slows this trend. Statistical evaluations of variability in Ion and Ioff as a function of scaling are also performed. For the first time, the impact of strain on statistical variability is studied. Gate line edge roughness results in areas of local channel shortening, accompanied by locally increased strain, both effects increasing the local current. Variations are observed in both the drive current, and in the drive current enhancement normally expected from the application of strain. In addition, the effects of shallow trench isolation (STI) on MOSFET performance and on its statistical variability are investigated for the first time. The inverse-narrow-width effect of STI enhances the current density adjacent to it. This leads to a local enhancement of the influence of junction shapes adjacent to the STI. There is also a statistical impact on the threshold voltage due to random STI induced traps at the silicon/oxide interface

    Statistical modelling of nano CMOS transistors with surface potential compact model PSP

    Get PDF
    The development of a statistical compact model strategy for nano-scale CMOS transistors is presented in this thesis. Statistical variability which arises from the discreteness of charge and granularity of matter plays an important role in scaling of nano CMOS transistors especially in sub 50nm technology nodes. In order to achieve reasonable performance and yield in contemporary CMOS designs, the statistical variability that affects the circuit/system performance and yield must be accurately represented by the industry standard compact models. As a starting point, predictive 3D simulation of an ensemble of 1000 microscopically different 35nm gate length transistors is carried out to characterize the impact of statistical variability on the device characteristics. PSP, an advanced surface potential compact model that is selected as the next generation industry standard compact model, is targeted in this study. There are two challenges in development of a statistical compact model strategy. The first challenge is related to the selection of a small subset of statistical compact model parameters from the large number of compact model parameters. We propose a strategy to select 7 parameters from PSP to capture the impact of statistical variability on current-voltage characteristics. These 7 parameters are used in statistical parameter extraction with an average RMS error of less than 2.5% crossing the whole operation region of the simulated transistors. Moreover, the accuracy of statistical compact model extraction strategy in reproducing the MOSFET electrical figures of merit is studied in detail. The results of the statistical compact model extraction are used for statistical circuit simulation of a CMOS inverter under different input-output conditions and different number of statistical parameters. The second challenge in the development of statistical compact model strategy is associated with statistical generation of parameters preserving the distribution and correlation of the directly extracted parameters. By using advanced statistical methods such as principal component analysis and nonlinear power method, the accuracy of parameter generation is evaluated and compared to directly extracted parameter sets. Finally, an extension of the PSP statistical compact model strategy to different channel width/length devices is presented. The statistical trends of parameters and figures of merit versus channel width/length are characterized

    Design and simulation of strained-Si/strained-SiGe dual channel hetero-structure MOSFETs

    Get PDF
    With a unified physics-based model linking MOSFET performance to carrier mobility and drive current, it is shown that nearly continuous carrier mobility increase has been achieved by introduction of process-induced and global-induced strain, which has been responsible for increase in device performance commensurately with scaling. Strained silicon-germanium technology is a hot research area, explored by many different research groups for present and future CMOS technology, due to its high hole mobility and easy process integration with silicon. Several heterostructure architectures for strained Si/SiGe have been shown in the literature. A dual channel heterostructure consisting of strained Si/Si1-xGex on a relaxed SiGe buffer provides a platform for fabricating MOS transistors with high drive currents, resulting from high carrier mobility and carrier velocity, due to presence of compressively strained silicon germanium layer. This works reports the design, modeling and simulation of NMOS and PMOS transistors with a tensile strained Si channel layer and compressively strained SiGe channel layer for a 65 nm logic technology node. Since most of the recent work on development of strained Si/SiGe has been experimental in nature, developments of compact models are necessary to predict the device behavior. A unified modeling approach consisting of different physics-based models has been formulated in this work and their ability to predict the device behavior has been investigated. In addition to this, quantum mechanical simulations were performed in order to investigate and model the device behavior. High p/n-channel drive currents of 0.43 and 0.98 mA/Gm, respectively, are reported in this work. However with improved performance, ~ 10% electrostatic degradation was observed in PMOS due to buried channel device

    Impact of the technology boosters on the MOSFET performance

    Get PDF
    The understanding of the charge transport in nano-scale CMOS device is a very challenging issue that requires a physics-based modelling approach. I use a Multi Subband Monte Carlo simulation framework to assess the effects of some of the mostly used techniques to overcome the performances of the conventional ultra-scaled MOSFET

    Miniaturized Transistors

    Get PDF
    What is the future of CMOS? Sustaining increased transistor densities along the path of Moore's Law has become increasingly challenging with limited power budgets, interconnect bandwidths, and fabrication capabilities. In the last decade alone, transistors have undergone significant design makeovers; from planar transistors of ten years ago, technological advancements have accelerated to today's FinFETs, which hardly resemble their bulky ancestors. FinFETs could potentially take us to the 5-nm node, but what comes after it? From gate-all-around devices to single electron transistors and two-dimensional semiconductors, a torrent of research is being carried out in order to design the next transistor generation, engineer the optimal materials, improve the fabrication technology, and properly model future devices. We invite insight from investigators and scientists in the field to showcase their work in this Special Issue with research papers, short communications, and review articles that focus on trends in micro- and nanotechnology from fundamental research to applications

    Journal of Telecommunications and Information Technology, 2004, nr 1

    Get PDF
    kwartalni

    Scaling and variability in ultra thin body silicon on insulator (UTB SOI) MOSFETs

    Get PDF
    The main objective of this thesis is to perform a comprehensive simulation study of the statistical variability in well scaled fully depleted ultra thin body silicon on insulator (FD-UTB SOI) at nanometer regime. It describes the design procedure for template FDUTB SOI transistor scaling and the impacts of statistical variability and reliability the scaled template transistor. The starting point of this study is a systematic simulation analysis based on a welldesigned 32nm thin body SOI template transistor provided by the FP7 project PULLNANO. The 32nm template transistor is consistent with the International Technology Roadmap for Semiconductor (ITRS) 2009 specifications. The wellestablished 3D ‘atomistic’ simulator GARAND has been employed in the designing of the scaled transistors and to carry out the statistical variability simulations. Following the foundation work in characterizing and optimizing the template 32 nm gate length transistor, the scaling proceeds down to 22 nm, 16 nm and 11 nm gate lengths using typically 0.7 scaling factor in respect of the horizontal and vertical transistor dimensions. The device design process is targeted for low power applications with a careful consideration of the impacts of the design parameters choice including buried oxide thickness (TBOX), source/drain doping abruptness (σ) and spacer length (Lspa). In order to determine the values of TBOX, σ, and Lspa, it is important to analyze simulation results, carefully assessing the impact on manufacturability and to consider the corresponding trade-off between short channel effects and on-current performance. Considering the above factors, TBOX = 10nm, σ = 2nm/dec and Lspa = 7nm have been adopted as optimum values respectively. iv The statistical variability of the transistor characteristics due to intrinsic parameter fluctuation (IPF) in well-scaled FD-UTB SOI devices is systematically studied for the first time. The impact of random dopant fluctuation (RDF), line edge roughness (LER) and metal gate granularity (MGG) on threshold voltage (Vth), on-current (Ion) and drain induced barrier lowering (DIBL) are analysed. Each principal sources of variability is treated individually and in combination with other variability sources in the simulation of large ensembles of microscopically different devices. The introduction of highk/ metal gate stack has improved the electrostatic integrity and enhanced the overall device performance. However, in the case of fully depleted channel transistors, MGG has become a dominant variability factor for all critical electrical parameters at gate first technology. For instance, σVth due to MGG increased to 41.9 mV at 11nm gate length compared to 26.0 mV at 22nm gate length. Similar trend has also been observed in σIon, increasing from 0.065 up to 0.174 mA/μm when the gate length is reduced from 22 nm down to 11 nm. Both RDF and LER have significant role in the intrinsic parameter fluctuations and therefore, none of these sources should be overlooked in the simulations. Finally, the impact of different variability sources in combination with positive bias temperature instability (PBTI) degradation on Vth, Ion and DIBL of the scaled nMOSFETs is investigated. Our study indicates that BTI induced charge trapping is a crucial reliability problem for the FD-UTB SOI transistors operation. Its impact not only introduces a significant degradation of transistor performance, but also accelerates the statistical variability. For example, the effect of a late degradation stage (at trap density of 1e12/cm2) in the presence of RDF, LER and MGG results in σVth increase to 36.9 mV, 45.0 mV and 58.3 mV for 22 nm, 16 nm and 11 nm respectively from the original 29.0 mV, 37.9 mV and 50.4 mV values in the fresh transistors

    Advances in Solid State Circuit Technologies

    Get PDF
    This book brings together contributions from experts in the fields to describe the current status of important topics in solid-state circuit technologies. It consists of 20 chapters which are grouped under the following categories: general information, circuits and devices, materials, and characterization techniques. These chapters have been written by renowned experts in the respective fields making this book valuable to the integrated circuits and materials science communities. It is intended for a diverse readership including electrical engineers and material scientists in the industry and academic institutions. Readers will be able to familiarize themselves with the latest technologies in the various fields

    Development of high mobility channel layer formation technology for high speed CMOS Devices

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore