32,609 research outputs found

    Airborne photogrammetry and LIDAR for DSM extraction and 3D change detection over an urban area : a comparative study

    Get PDF
    A digital surface model (DSM) extracted from stereoscopic aerial images, acquired in March 2000, is compared with a DSM derived from airborne light detection and ranging (lidar) data collected in July 2009. Three densely built-up study areas in the city centre of Ghent, Belgium, are selected, each covering approximately 0.4 km(2). The surface models, generated from the two different 3D acquisition methods, are compared qualitatively and quantitatively as to what extent they are suitable in modelling an urban environment, in particular for the 3D reconstruction of buildings. Then the data sets, which are acquired at two different epochs t(1) and t(2), are investigated as to what extent 3D (building) changes can be detected and modelled over the time interval. A difference model, generated by pixel-wise subtracting of both DSMs, indicates changes in elevation. Filters are proposed to differentiate 'real' building changes from false alarms provoked by model noise, outliers, vegetation, etc. A final 3D building change model maps all destructed and newly constructed buildings within the time interval t(2) - t(1). Based on the change model, the surface and volume of the building changes can be quantified

    The relationship between substructure in 2D X-ray surface brightness images and weak lensing mass maps of galaxy clusters: A simulation study

    Full text link
    In this paper, we undertake a study to determine what insight can be reliably gleaned from the comparison of the X-ray and the weak lensing mass maps of galaxy clusters. We do this by investigating the 2D substructure within three high-resolution cosmological simulations of galaxy clusters. Our main results focus on non-radiative gas dynamics, but we also consider the effects of radiative cooling at high redshift. For our analysis, we use a novel approach, based on unsharp-masking, to identify substructures in 2D surface mass density and X-ray surface brightness maps. At full resolution (~ 15 h^-1 kpc), this technique is capable of identifying almost all self-bound dark matter subhaloes with M>10^12 h^-1 M_sun. We also report a correlation between the mass of a subhalo and the area of its corresponding 2D detection; such a correlation, once calibrated, could provide a useful estimator for substructure mass. Comparing our 2D mass and X-ray substructures, we find a surprising number of cases where the matching fails: around one third of galaxy-sized substructures have no X-ray counterpart. Some interesting cases are also found at larger masses, in particular the cores of merging clusters where the situation can be complex. Finally, we degrade our mass maps to what is currently achievable with weak-lensing observations (~100 h^-1 kpc at z=0.2). While the completeness mass limit increases by around an order of magnitude, a mass-area correlation remains. Our paper clearly demonstrates that the next generation of lensing surveys should start to reveal a wealth of information on cluster substructure. (Abridged)Comment: 30 pages, 27 figures, 3 tables. Accepted for publication in MNRAS. High resolution version available at http://www.physics.ox.ac.uk/users/powell/clustersubs_highres.pd

    Building Proteins in a Day: Efficient 3D Molecular Reconstruction

    Full text link
    Discovering the 3D atomic structure of molecules such as proteins and viruses is a fundamental research problem in biology and medicine. Electron Cryomicroscopy (Cryo-EM) is a promising vision-based technique for structure estimation which attempts to reconstruct 3D structures from 2D images. This paper addresses the challenging problem of 3D reconstruction from 2D Cryo-EM images. A new framework for estimation is introduced which relies on modern stochastic optimization techniques to scale to large datasets. We also introduce a novel technique which reduces the cost of evaluating the objective function during optimization by over five orders or magnitude. The net result is an approach capable of estimating 3D molecular structure from large scale datasets in about a day on a single workstation.Comment: To be presented at IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 201

    Improved Depth Map Estimation from Stereo Images based on Hybrid Method

    Get PDF
    In this paper, a stereo matching algorithm based on image segments is presented. We propose the hybrid segmentation algorithm that is based on a combination of the Belief Propagation and Mean Shift algorithms with aim to refine the disparity and depth map by using a stereo pair of images. This algorithm utilizes image filtering and modified SAD (Sum of Absolute Differences) stereo matching method. Firstly, a color based segmentation method is applied for segmenting the left image of the input stereo pair (reference image) into regions. The aim of the segmentation is to simplify representation of the image into the form that is easier to analyze and is able to locate objects in images. Secondly, results of the segmentation are used as an input of the local window-based matching method to determine the disparity estimate of each image pixel. The obtained experimental results demonstrate that the final depth map can be obtained by application of segment disparities to the original images. Experimental results with the stereo testing images show that our proposed Hybrid algorithm HSAD gives a good performance

    STV-based Video Feature Processing for Action Recognition

    Get PDF
    In comparison to still image-based processes, video features can provide rich and intuitive information about dynamic events occurred over a period of time, such as human actions, crowd behaviours, and other subject pattern changes. Although substantial progresses have been made in the last decade on image processing and seen its successful applications in face matching and object recognition, video-based event detection still remains one of the most difficult challenges in computer vision research due to its complex continuous or discrete input signals, arbitrary dynamic feature definitions, and the often ambiguous analytical methods. In this paper, a Spatio-Temporal Volume (STV) and region intersection (RI) based 3D shape-matching method has been proposed to facilitate the definition and recognition of human actions recorded in videos. The distinctive characteristics and the performance gain of the devised approach stemmed from a coefficient factor-boosted 3D region intersection and matching mechanism developed in this research. This paper also reported the investigation into techniques for efficient STV data filtering to reduce the amount of voxels (volumetric-pixels) that need to be processed in each operational cycle in the implemented system. The encouraging features and improvements on the operational performance registered in the experiments have been discussed at the end

    Joint Blind Motion Deblurring and Depth Estimation of Light Field

    Full text link
    Removing camera motion blur from a single light field is a challenging task since it is highly ill-posed inverse problem. The problem becomes even worse when blur kernel varies spatially due to scene depth variation and high-order camera motion. In this paper, we propose a novel algorithm to estimate all blur model variables jointly, including latent sub-aperture image, camera motion, and scene depth from the blurred 4D light field. Exploiting multi-view nature of a light field relieves the inverse property of the optimization by utilizing strong depth cues and multi-view blur observation. The proposed joint estimation achieves high quality light field deblurring and depth estimation simultaneously under arbitrary 6-DOF camera motion and unconstrained scene depth. Intensive experiment on real and synthetic blurred light field confirms that the proposed algorithm outperforms the state-of-the-art light field deblurring and depth estimation methods
    corecore