2,676 research outputs found

    An Octree-Based Approach towards Efficient Variational Range Data Fusion

    Full text link
    Volume-based reconstruction is usually expensive both in terms of memory consumption and runtime. Especially for sparse geometric structures, volumetric representations produce a huge computational overhead. We present an efficient way to fuse range data via a variational Octree-based minimization approach by taking the actual range data geometry into account. We transform the data into Octree-based truncated signed distance fields and show how the optimization can be conducted on the newly created structures. The main challenge is to uphold speed and a low memory footprint without sacrificing the solutions' accuracy during optimization. We explain how to dynamically adjust the optimizer's geometric structure via joining/splitting of Octree nodes and how to define the operators. We evaluate on various datasets and outline the suitability in terms of performance and geometric accuracy.Comment: BMVC 201

    Center-of-Mass Properties of the Exciton in Quantum Wells

    Full text link
    We present high-quality numerical calculations of the exciton center-of-mass dispersion for GaAs/AlGaAs quantum wells of widths in the range 2-20 nm. The k.p-coupling of the heavy- and light-hole bands is fully taken into account. An optimized center-of-mass transformation enhances numerical convergence. We derive an easy-to-use semi-analytical expression for the exciton groundstate mass from an ansatz for the exciton wavefunction at finite momentum. It is checked against the numerical results and found to give very good results. We also show multiband calculations of the exciton groundstate dispersion using a finite-differences scheme in real space, which can be applied to rather general heterostructures.Comment: 19 pages, 12 figures included, to be published in Phys. Rev.

    Adaptive coarse-to-fine quantization for optimizing rate-distortion of progressive mesh compression

    Get PDF
    International audienceWe propose a new connectivity-based progressivecompression approach for triangle meshes. The keyidea is to adapt the quantization precision to the resolutionof each intermediate mesh so as to optimizethe rate-distortion trade-off. This adaptation is automaticallydetermined during the encoding processand the overhead is efficiently encoded using geometricalprediction techniques. We also introducean optimization of the geometry coding by usinga bijective discrete rotation. Results show that ourapproach delivers a better rate-distortion behaviorthan both connectivity-based and geometry-basedcompression state of the art method
    • …
    corecore