111 research outputs found

    HeadOn: Real-time Reenactment of Human Portrait Videos

    Get PDF
    We propose HeadOn, the first real-time source-to-target reenactment approach for complete human portrait videos that enables transfer of torso and head motion, face expression, and eye gaze. Given a short RGB-D video of the target actor, we automatically construct a personalized geometry proxy that embeds a parametric head, eye, and kinematic torso model. A novel real-time reenactment algorithm employs this proxy to photo-realistically map the captured motion from the source actor to the target actor. On top of the coarse geometric proxy, we propose a video-based rendering technique that composites the modified target portrait video via view- and pose-dependent texturing, and creates photo-realistic imagery of the target actor under novel torso and head poses, facial expressions, and gaze directions. To this end, we propose a robust tracking of the face and torso of the source actor. We extensively evaluate our approach and show significant improvements in enabling much greater flexibility in creating realistic reenacted output videos.Comment: Video: https://www.youtube.com/watch?v=7Dg49wv2c_g Presented at Siggraph'1

    3D Face Synthesis with KINECT

    Get PDF
    This work describes the process of face synthesis by image morphing from less expensive 3D sensors such as KINECT that are prone to sensor noise. Its main aim is to create a useful face database for future face recognition studies.Peer reviewe

    A framework for realistic 3D tele-immersion

    Get PDF
    Meeting, socializing and conversing online with a group of people using teleconferencing systems is still quite differ- ent from the experience of meeting face to face. We are abruptly aware that we are online and that the people we are engaging with are not in close proximity. Analogous to how talking on the telephone does not replicate the experi- ence of talking in person. Several causes for these differences have been identified and we propose inspiring and innova- tive solutions to these hurdles in attempt to provide a more realistic, believable and engaging online conversational expe- rience. We present the distributed and scalable framework REVERIE that provides a balanced mix of these solutions. Applications build on top of the REVERIE framework will be able to provide interactive, immersive, photo-realistic ex- periences to a multitude of users that for them will feel much more similar to having face to face meetings than the expe- rience offered by conventional teleconferencing systems

    A Framework for Realistic 3D Tele-Immersion

    Get PDF
    Meeting, socializing and conversing online with a group of people using teleconferencing systems is still quite different from the experience of meeting face to face. We are abruptly aware that we are online and that the people we are engaging with are not in close proximity. Analogous to how talking on the telephone does not replicate the experience of talking in person. Several causes for these differences have been identified and we propose inspiring and innovative solutions to these hurdles in attempt to provide a more realistic, believable and engaging online conversational experience. We present the distributed and scalable framework REVERIE that provides a balanced mix of these solutions. Applications build on top of the REVERIE framework will be able to provide interactive, immersive, photo-realistic experiences to a multitude of users that for them will feel much more similar to having face to face meetings than the experience offered by conventional teleconferencing systems

    A Framework for Realistic 3D Tele-Immersion

    Get PDF
    Meeting, socializing and conversing online with a group of people using teleconferencing systems is still quite different from the experience of meeting face to face. We are abruptly aware that we are online and that the people we are engaging with are not in close proximity. Analogous to how talking on the telephone does not replicate the experience of talking in person. Several causes for these differences have been identied and we propose inspiring and innovative solutions to these hurdles in attempt to provide a more realistic, believable and engaging online conversational experience. We present the distributed and scalable framework REVERIE that provides a balanced mix of these solutions. Applications build on top of the REVERIE framework will be able to provide interactive, immersive, photo-realistic experiences to a multitude of users that for them will feel much more similar to having face to face meetings than the experience offered by conventional teleconferencing systems

    Computational Modeling of Facial Response for Detecting Differential Traits in Autism Spectrum Disorders

    Get PDF
    This dissertation proposes novel computational modeling and computer vision methods for the analysis and discovery of differential traits in subjects with Autism Spectrum Disorders (ASD) using video and three-dimensional (3D) images of face and facial expressions. ASD is a neurodevelopmental disorder that impairs an individual’s nonverbal communication skills. This work studies ASD from the pathophysiology of facial expressions which may manifest atypical responses in the face. State-of-the-art psychophysical studies mostly employ na¨ıve human raters to visually score atypical facial responses of individuals with ASD, which may be subjective, tedious, and error prone. A few quantitative studies use intrusive sensors on the face of the subjects with ASD, which in turn, may inhibit or bias the natural facial responses of these subjects. This dissertation proposes non-intrusive computer vision methods to alleviate these limitations in the investigation for differential traits from the spontaneous facial responses of individuals with ASD. Two IRB-approved psychophysical studies are performed involving two groups of age-matched subjects: one for subjects diagnosed with ASD and the other for subjects who are typically-developing (TD). The facial responses of the subjects are computed from their facial images using the proposed computational models and then statistically analyzed to infer about the differential traits for the group with ASD. A novel computational model is proposed to represent the large volume of 3D facial data in a small pose-invariant Frenet frame-based feature space. The inherent pose-invariant property of the proposed features alleviates the need for an expensive 3D face registration in the pre-processing step. The proposed modeling framework is not only computationally efficient but also offers competitive performance in 3D face and facial expression recognition tasks when compared with that of the state-ofthe-art methods. This computational model is applied in the first experiment to quantify subtle facial muscle response from the geometry of 3D facial data. Results show a statistically significant asymmetry in specific pair of facial muscle activation (p\u3c0.05) for the group with ASD, which suggests the presence of a psychophysical trait (also known as an ’oddity’) in the facial expressions. For the first time in the ASD literature, the facial action coding system (FACS) is employed to classify the spontaneous facial responses based on facial action units (FAUs). Statistical analyses reveal significantly (p\u3c0.01) higher prevalence of smile expression (FAU 12) for the ASD group when compared with the TD group. The high prevalence of smile has co-occurred with significantly averted gaze (p\u3c0.05) in the group with ASD, which is indicative of an impaired reciprocal communication. The metric associated with incongruent facial and visual responses suggests a behavioral biomarker for ASD. The second experiment shows a higher prevalence of mouth frown (FAU 15) and significantly lower correlations between the activation of several FAU pairs (p\u3c0.05) in the group with ASD when compared with the TD group. The proposed computational modeling in this dissertation offers promising biomarkers, which may aid in early detection of subtle ASD-related traits, and thus enable an effective intervention strategy in the future

    3D Human Face Reconstruction and 2D Appearance Synthesis

    Get PDF
    3D human face reconstruction has been an extensive research for decades due to its wide applications, such as animation, recognition and 3D-driven appearance synthesis. Although commodity depth sensors are widely available in recent years, image based face reconstruction are significantly valuable as images are much easier to access and store. In this dissertation, we first propose three image-based face reconstruction approaches according to different assumption of inputs. In the first approach, face geometry is extracted from multiple key frames of a video sequence with different head poses. The camera should be calibrated under this assumption. As the first approach is limited to videos, we propose the second approach then focus on single image. This approach also improves the geometry by adding fine grains using shading cue. We proposed a novel albedo estimation and linear optimization algorithm in this approach. In the third approach, we further loose the constraint of the input image to arbitrary in the wild images. Our proposed approach can robustly reconstruct high quality model even with extreme expressions and large poses. We then explore the applicability of our face reconstructions on four interesting applications: video face beautification, generating personalized facial blendshape from image sequences, face video stylizing and video face replacement. We demonstrate great potentials of our reconstruction approaches on these real-world applications. In particular, with the recent surge of interests in VR/AR, it is increasingly common to see people wearing head-mounted displays. However, the large occlusion on face is a big obstacle for people to communicate in a face-to-face manner. Our another application is that we explore hardware/software solutions for synthesizing the face image with presence of HMDs. We design two setups (experimental and mobile) which integrate two near IR cameras and one color camera to solve this problem. With our algorithm and prototype, we can achieve photo-realistic results. We further propose a deep neutral network to solve the HMD removal problem considering it as a face inpainting problem. This approach doesn\u27t need special hardware and run in real-time with satisfying results
    corecore