399 research outputs found

    State-of-the-art assessment of 5G mmWave communications

    Get PDF
    Deliverable D2.1 del proyecto 5GWirelessMain objective of the European 5Gwireless project, which is part of the H2020 Marie Slodowska- Curie ITN (Innovative Training Networks) program resides in the training and involvement of young researchers in the elaboration of future mobile communication networks, focusing on innovative wireless technologies, heterogeneous network architectures, new topologies (including ultra-dense deployments), and appropriate tools. The present Document D2.1 is the first deliverable of Work- Package 2 (WP2) that is specifically devoted to the modeling of the millimeter-wave (mmWave) propagation channels, and development of appropriate mmWave beamforming and signal processing techniques. Deliver D2.1 gives a state-of-the-art on the mmWave channel measurement, characterization and modeling; existing antenna array technologies, channel estimation and precoding algorithms; proposed deployment and networking techniques; some performance studies; as well as a review on the evaluation and analysis toolsPostprint (published version

    Towards environmental RF-EMF assessment of mmwave high-node density complex heterogeneous environments

    Get PDF
    The densification of multiple wireless communication systems that coexist nowadays, as well as the 5G new generation cellular systems advent towards the millimeter wave (mmWave) frequency range, give rise to complex context-aware scenarios with high-node density heterogeneous networks. In this work, a radiofrequency electromagnetic field (RF-EMF) exposure assessment from an empirical and modeling approach for a large, complex indoor setting with high node density and traffic is presented. For that purpose, an intensive and comprehensive in-depth RF-EMF E-field characterization study is provided in a public library study case, considering dense personal mobile communications (5G FR2 @28 GHz) and wireless 802.11ay (@60 GHz) data access services on the mmWave frequency range. By means of an enhanced in-house deterministic 3D ray launching (3D-RL) simulation tool for RF-EMF exposure assessment, different complex heterogenous scenarios of high complexity are assessed in realistic operation conditions, considering different user distributions and densities. The use of directive antennas and MIMO beamforming techniques, as well as all the corresponding features in terms of radio wave propagation, such as the body shielding effect, dispersive material properties of obstacles, the impact of the distribution of scatterers and the associated electromagnetic propagation phenomena, are considered for simulation. Discussion regarding the contribution and impact of the coexistence of multiple heterogeneous networks and services is presented, verifying compliance with the current established international regulation limits with exposure levels far below the aforementioned limits. Finally, the proposed simulation technique is validated with a complete empirical campaign of measurements, showing good agreement. In consequence, the obtained datasets and simulation estimations, along with the proposed RF-EMF simulation tool, could be a reference approach for the design, deployment and exposure assessment of the current and future wireless communication technologies on the mmWave spectrum, where massive high-node density heterogeneous networks are expected.Project RTI2018-095499-B-C31 was funded by the Ministerio de Ciencia, Innovación y Universidades, Gobierno de España (MCIU/AEI/FEDER, UE). This project received funding from Universidad Carlos III de Madrid and the European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie Grant 801538

    Millimetre wave frequency band as a candidate spectrum for 5G network architecture : a survey

    Get PDF
    In order to meet the huge growth in global mobile data traffic in 2020 and beyond, the development of the 5th Generation (5G) system is required as the current 4G system is expected to fall short of the provision needed for such growth. 5G is anticipated to use a higher carrier frequency in the millimetre wave (mm-wave) band, within the 20 to 90 GHz, due to the availability of a vast amount of unexploited bandwidth. It is a revolutionary step to use these bands because of their different propagation characteristics, severe atmospheric attenuation, and hardware constraints. In this paper, we carry out a survey of 5G research contributions and proposed design architectures based on mm-wave communications. We present and discuss the use of mm-wave as indoor and outdoor mobile access, as a wireless backhaul solution, and as a key enabler for higher order sectorisation. Wireless standards such as IEE802.11ad, which are operating in mm-wave band have been presented. These standards have been designed for short range, ultra high data throughput systems in the 60 GHz band. Furthermore, this survey provides new insights regarding relevant and open issues in adopting mm-wave for 5G networks. This includes increased handoff rate and interference in Ultra-Dense Network (UDN), waveform consideration with higher spectral efficiency, and supporting spatial multiplexing in mm-wave line of sight. This survey also introduces a distributed base station architecture in mm-wave as an approach to address increased handoff rate in UDN, and to provide an alternative way for network densification in a time and cost effective manner

    Investigation of Prediction Accuracy, Sensitivity, and Parameter Stability of Large-Scale Propagation Path Loss Models for 5G Wireless Communications

    Get PDF
    This paper compares three candidate large-scale propagation path loss models for use over the entire microwave and millimeter-wave (mmWave) radio spectrum: the alpha-beta-gamma (ABG) model, the close-in (CI) free space reference distance model, and the CI model with a frequency-weighted path loss exponent (CIF). Each of these models have been recently studied for use in standards bodies such as 3GPP, and for use in the design of fifth generation (5G) wireless systems in urban macrocell, urban microcell, and indoor office and shopping mall scenarios. Here we compare the accuracy and sensitivity of these models using measured data from 30 propagation measurement datasets from 2 GHz to 73 GHz over distances ranging from 4 m to 1238 m. A series of sensitivity analyses of the three models show that the physically-based two-parameter CI model and three-parameter CIF model offer computational simplicity, have very similar goodness of fit (i.e., the shadow fading standard deviation), exhibit more stable model parameter behavior across frequencies and distances, and yield smaller prediction error in sensitivity testing across distances and frequencies, when compared to the four-parameter ABG model. Results show the CI model with a 1 m close-in reference distance is suitable for outdoor environments, while the CIF model is more appropriate for indoor modeling. The CI and CIF models are easily implemented in existing 3GPP models by making a very subtle modification -- by replacing a floating non-physically based constant with a frequency-dependent constant that represents free space path loss in the first meter of propagation.Comment: Open access available at: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=743465
    corecore