6 research outputs found

    Conception et évaluation d'un prototype de simulation de la morphogenèse urbaine par agents vecteurs multi-échelles

    Get PDF
    The research work of this PhD thesis was carried out in the context of an interdisciplinary project related to the study of urban morphogenesis. A team composed of architects and engineers specialized in GIS technologies have worked together in this project during three years, sharing their knowledge in order to understand and simulate the evolution of the urban environment of cities. The fundamental hypothesis that conducted this research is that the city can be seen as a self-organizing system governed by a set of morphogenesis rules, which can for example, determine the location of new architectural programs and induce the city's organization, from local to global scales. Architectural programs themselves are supposed to determine city's development. In this PhD thesis a simulation prototype of the urban growth based on the use of multi-agents systems was carried out. This prototype is a computer tool that allows the analysis and representation of the growth of the built environment. Nowadays, the ability to understand and simulate urban evolution proves to be essential in order to control the evolution of a city in a sustainable development view. Furthermore, this tool should facilitate the understanding and decision-making of those concerned with problems related to urban development. The urban system has been modeled as a set of space objects, such as buildings and networks, which interact between themselves. These interactions are carried out at different levels, from local to global scales, being controlled by behavioral rules or laws of growth. The result of their interaction can be figures or emergent phenomena represented at several scales. The approach using multi-agents vector systems was chosen in order to model a geographical complex system like a city, which integrates a vectorial modeling of space. Hence, each spatial agent does not possess a limit of form and size. The interest of using multi-agents vector systems also lies in their ability to manage various models of individuals, from simple entities to more complex ones. Thus, various levels of representation, such as individuals and groups of individuals, can be managed, which is not easily feasible, for example, with cellular agents. The development platform used is GeOxygene (Java computer programming language), which is an open-source platform developed at IGN (Institut Géographique National, France), by COGIT laboratory. This platform provides several GIS functions, allowing the development and implementation of the prototype here presented. An interaction model between agents was defined and the type of scenarios of each of these interactions was detailed. A set of methods and associated classes was developed. Agent's architecture was conceived in order to allow manipulation (sending, receiving and treatment) of exchanged messages. In order to show the relevance of the multi-agent multi-scale methodology, examples of buildings creation in a case study zone were carried out. Using the multi-scale vector simulation prototype here presented, the development of cities can be computed in a very innovative way. However, the developed prototype still lacks some accuracy, mostly due to the fact that the specified laws adopted for simulation do not reflect the whole reality, which is obviously much more complex to traduce. We have not yet validated the model for other cities – nevertheless, the model could already be used as a decision support tool, particularly as a planning support instrument for architects and urban planners. With regards to future work this prototype shall be integrated in a global approach of urban simulation, allowing the analysis of environmental risks, demographic and economic growth and transports simulation at different scales of analysis and 2D/3D visualization output, such as district and city

    Morphogenèse de la métropole : rapport final

    Get PDF

    Extraction of Urban Environmental Quality Indicators using LiDAR-Based Digital Surface Models

    Get PDF
    The visualization of specific 3-D urban scenes can be done calling upon different techniques, from those more traditional, such as photogrammetry, to the most advanced ones, such as laser scanning that uses different techniques and algorithms of selection and modelling of 3-D point clouds. The use and utility of this kind of data for the study of urban development remain however debatable. Indeed, indicators for urban development and durability are highly necessary and the best methodology to build them is largely open. This thesis anticipates the use of 2-D and 3-D models and data for the environmental analysis of cities, aiming to provide useful tools for urban planning and design. According to end-users requirements, the extraction of urban environmental quality (UEQ) indicators from 2-D and 3-D information using innovative methods is proposed and implemented, which is based on recent research on computational algorithms for the analysis, evaluation, management and design of the urban space. Moreover, results that can be obtained with different data sources and aggregation methods are compared. In particular, the main advantages of urban models generated from LiDAR data are highlighted. In consequence, an iterative process is proposed, involving professionals of various fields, aiming at improving the utility of those indicators for the support of applied decision activities related to the sustainable development of cities. This process is sub-divided in three correlated steps: A preliminary inquiry concerning the user requirements for the implementation of a 3-D project of the State/City of Geneva was launched. Based on the obtained replies, several potential applications related to both the definition and extraction of urban indicators were identified, and also, end-users were classified into 6 different domains: 1– architecture, urbanism and territory planning; 2– urban traffic (motor vehicles, trains and airplanes); 3– environment and energy; 4– pedestrian and cyclist mobility; 5– security and emergency situations management; 6– underground information; Based on point 1. and according to the assessment of the specific needs among each of these domains, several interviews were carried out in which 25 end-users decided to focus on UEQ indicators considering three main stakes: 1– assessment of the morphological properties of the urban texture; 2– exploration of the solar potential on the urban fabric; 3– estimation of the energy demand on the urban fabric. Many empirical case-studies are emphasized, mostly for the city of Geneva, and also for the cities of Lausanne and Florence. These indicators are extracted from the segmentation of planar roof areas using classified LiDAR point clouds and the use of image processing techniques based on Digital Elevation Models (DEM) and Digital Height Models (DHM), defined in this thesis as 2.5-Digital Urban Surface Models (2.5-DUSM) and normalized 2.5-Digital Urban Surface Models (n2.5-DUSM) respectively. These models are constructed in a step by step basis, using LiDAR and 2-D and 3-D vector data, thus applying different methods of interpolation and enhancement, whose accuracy is also evaluated on a statistical basis; Finally, an inquiry on how the same group of 25 end-users mentioned in point 1. perceives and interprets the different exploratory 2-D and 3-D geo-visualizations proposed for some of the UEQ indicators is undertaken, evaluating their utility according to the requirements previously defined

    Morphogenèse de la ville contemporaine:essai sur la multi-échelle

    Get PDF
    Unstable growth, unlimited urban sprawl, and multiple fragmentations are contemporary urban phenomena requiring new investigations and interpretations of the physical impact of form on today's cities. The city as a living organism with an evolving structure adopts a principle of economy in its form generating process. The city is indeed capable of auto-organization by interaction of its programs. In the frame of this research, this dynamic process named "urban morphogenesis", originating from a logic of nature, is an engineering approach which uses concepts of symmetry – invariance, transformation, and reorganization – from local to global scales. The evolution and complexity of the contemporary city's form could be explained in a new and simple model operating with dynamic notions. A theoretical "multi-scale" model based on ascendant process that uses a set of dynamic notions was set up to accurately describe the city's transformations. The dynamics are mainly applied to the appearance of programs, to the reproduction of habitat groups, to the movement of urban centres due to the presence of new collective programs and to the flexible limit of continuous urban systems. The model can also contribute to explain strategic (de) localizations of important public programs in unsteady areas. To test the new model, the agglomeration areas of Lausanne located in the middle of "MĂ©tropole lĂ©manique" were chosen as experiment subjects. Hopefully, this polyvalent "morphogenesis representation" model based on the following simple geometric codes: "—, Δ, ◻, ○" will serve to generate new insights and analyses of metropolitan areas. Evolution of the research will make progress the following debate: "Are both nature's forms and the urban form symmetrical in their morphogenesis?
    corecore