316 research outputs found

    Comparative analysis of Kinect-based and Oculus-based gaze region estimation methods in a driving simulator

    Get PDF
    Producción CientíficaDriver’s gaze information can be crucial in driving research because of its relation to driver attention. Particularly, the inclusion of gaze data in driving simulators broadens the scope of research studies as they can relate drivers’ gaze patterns to their features and performance. In this paper, we present two gaze region estimation modules integrated in a driving simulator. One uses the 3D Kinect device and another uses the virtual reality Oculus Rift device. The modules are able to detect the region, out of seven in which the driving scene was divided, where a driver is gazing at in every route processed frame. Four methods were implemented and compared for gaze estimation, which learn the relation between gaze displacement and head movement. Two are simpler and based on points that try to capture this relation and two are based on classifiers such as MLP and SVM. Experiments were carried out with 12 users that drove on the same scenario twice, each one with a different visualization display, first with a big screen and later with Oculus Rift. On the whole, Oculus Rift outperformed Kinect as the best hardware for gaze estimation. The Oculus-based gaze region estimation method with the highest performance achieved an accuracy of 97.94%. The information provided by the Oculus Rift module enriches the driving simulator data and makes it possible a multimodal driving performance analysis apart from the immersion and realism obtained with the virtual reality experience provided by Oculus.Dirección General de Tráfico y Ministerio del Interior - (Proyecto SPIP2015-01801

    Implementing a Gaze Tracking Algorithm for Improving Advanced Driver Assistance Systems

    Get PDF
    Car accidents are one of the top ten causes of death and are produced mainly by driver distractions. ADAS (Advanced Driver Assistance Systems) can warn the driver of dangerous scenarios, improving road safety, and reducing the number of traffic accidents. However, having a system that is continuously sounding alarms can be overwhelming or confusing or both, and can be counterproductive. Using the driver"s attention to build an efficient ADAS is the main contribution of this work. To obtain this 'attention value” the use of a Gaze tracking is proposed. Driver"s gaze direction is a crucial factor in understanding fatal distractions, as well as discerning when it is necessary to warn the driver about risks on the road. In this paper, a real-time gaze tracking system is proposed as part of the development of an ADAS that obtains and communicates the driver"s gaze information. The developed ADAS uses gaze information to determine if the drivers are looking to the road with their full attention. This work gives a step ahead in the ADAS based on the driver, building an ADAS that warns the driver only in case of distraction. The gaze tracking system was implemented as a model-based system using a Kinect v2.0 sensor and was adjusted on a set-up environment and tested on a suitable-features driving simulation environment. The average obtained results are promising, having hit ratios between 96.37% and 81.84%This work has been supported by the Spanish Government under projects TRA2016-78886-C3-1-R, PID2019-104793RB-C31, RTI2018-096036-B-C22, PEAVAUTO-CM-UC3M and by the Region of Madrid Excellence Program (EPUC3M17

    3D Computer Vision and Wireless Sensor Applications in an-experimental Study on Electric Vehicle Driving in Roundabout Negotiation Scenarios

    Get PDF
    In this paper, a 3D computer vision application and a wireless sensor application are presented. They were used in an experimental study on electric vehicle driving to analyse the influence of age on driving style in roundabout scenarios. The 3D computer vision application uses the Kinect device to achieve face tracking of the driver. From the pith, roll and yaw angles of the face, the gaze can be estimated. Thus in each processed image, the region, from the predefined ROIs, where the driver is gazing at can be estimated. Gaze patterns and transitions in driving situations, particularly while negotiating roundabouts, can be determined. The wireless sensor application uses the gyroscope included in a 9DoF (Degrees of Freedom) sensor from the Shimmer platform. The gyroscope was placed on the steering wheel. The signal corresponding to the turn axis of the steering wheel is obtained so that the direction and speed of any turn can be detected. Besides, the heart rate was monitored and the electric car used in the experiments was equipped with an extensive telemetry system. 28 people took part in the experiments. They drove on the same 13-kilometer on-road route in Sunderland (UK) using a Smart Fortwo electric vehicle and on a route with a Forum 8 driving simulator. Only a brief description of the experiments is included. Results and analysis will be presented in the future. Experimental studies with electric cars are needed to support their progressive penetration in the market

    Multimodal Polynomial Fusion for Detecting Driver Distraction

    Full text link
    Distracted driving is deadly, claiming 3,477 lives in the U.S. in 2015 alone. Although there has been a considerable amount of research on modeling the distracted behavior of drivers under various conditions, accurate automatic detection using multiple modalities and especially the contribution of using the speech modality to improve accuracy has received little attention. This paper introduces a new multimodal dataset for distracted driving behavior and discusses automatic distraction detection using features from three modalities: facial expression, speech and car signals. Detailed multimodal feature analysis shows that adding more modalities monotonically increases the predictive accuracy of the model. Finally, a simple and effective multimodal fusion technique using a polynomial fusion layer shows superior distraction detection results compared to the baseline SVM and neural network models.Comment: INTERSPEECH 201

    Human–Machine Interface in Transport Systems: An Industrial Overview for More Extended Rail Applications

    Get PDF
    This paper provides an overview of Human Machine Interface (HMI) design and command systems in commercial or experimental operation across transport modes. It presents and comments on different HMIs from the perspective of vehicle automation equipment and simulators of different application domains. Considering the fields of cognition and automation, this investigation highlights human factors and the experiences of different industries according to industrial and literature reviews. Moreover, to better focus the objectives and extend the investigated industrial panorama, the analysis covers the most effective simulators in operation across various transport modes for the training of operators as well as research in the fields of safety and ergonomics. Special focus is given to new technologies that are potentially applicable in future train cabins, e.g., visual displays and haptic-shared controls. Finally, a synthesis of human factors and their limits regarding support for monitoring or driving assistance is propose

    AN INTELLIGENT CO-DRIVER SURVEILLANCE SYSTEM

    Get PDF

    Monitoring the driver's activity using 3D information

    Get PDF
    Driver supervision is crucial in safety systems for the driver. It is important to monitor the driver to understand his necessities, patterns of movements and behaviour under determined circumstances. The availability of an accurate tool to supervise the driver’s behaviour allows multiple objectives to be achieved such as the detection of drowsiness (analysing the head movements and blinking pattern) and distraction (estimating where the driver is looking by studying the head and eyes position). Once the misbehaviour is detected in both cases an alarm, of the correct type according to the situation, could be triggered to correct the driver’s behaviour. This application distinguishes itself form other driving assistance systems due to the fact that it is oriented to analyse the inside of the vehicle instead of the outside. It is important to notice that inside supervising applications are as important as the outside supervising applications because if the driver falls asleep, a pedestrian detection algorithm can do only limited actions to prevent the accident. All this under the best and predetermined circumstances. The application has the potential to be used to estimate if the driver is looking at certain area where another application detected that an obstacle is present (inert object, animal or pedestrian). Although the market has already available technologies, able to provide automatic driver monitoring, the associated cost of the sensors to accomplish this task is very high as it is not a popular product (compared to other home or entertaining devices) nor there is a market with a high demand and supply for this sensors. Many of these technologies require external and invasive devices (attach one or a set of sensors to the body) which may interfere the driving movements proper of the nature of the driver under no supervised conditions. Current applications based on computer vision take advantage of the latest development of information technologies and the increase in computational power to create applications that fit to the criteria of a non-invasive method for driving monitoring application. Technologies such as stereo and time of flight cameras are able to overcome some of the difficulties related to computer vision applications such as extreme lighting conditions (too dark or too bright) saturation of the colour sensors and lack of depth information. It is true that the combination of different sensors can overcome this problems by performing multiple scans from different areas or by combining the information obtained from different devices but this requires an additional step of calibration, positioning and it involves a dependability factor of the application on not one but as many sensors included in the task to perform the supervision because if one of them fails, the results may not be correct. Some of the recent gaming sensors available in the market, such as the Kinect sensor bar form Microsoft, are providing a new set of previously-expensive sensors embedded in a low cost device, thus providing 3D information together with some additional features and without the need for complex sets of handcrafted system that can fail as previously mentioned. The proposed solution in this thesis monitors the driver by using the different data from the Kinect sensor (depth information, infrared and colour image). The fusion of the information from the different sources allows the usage of 2D and 3D algorithms in order to provide a reliable face detection, accurate pose estimation and trustable detection of facial features such as the eyes and nose. The system will compare, with an average speed over 10Hz, the initial face capture with the next frames, it will compare by an iterative algorithm previously configured with the compromise of accuracy and speed. In order to determine the reliability and accuracy of the proposed system, several tests were performed for the head-pose orientation algorithm with an Inertial Measurement Unit (IMU) attached to the back of the head of the collaborative subjects. The inertial measurements provided by the IMU were used as a ground truth for three degrees of freedom (3DoF) tests (yaw, pitch and roll). Finally, the tests results were compared with those available in current literature to check the performance of the algorithm presented. Estimating the head orientation is the main function of this proposal as it is the one that delivers more information to estimate the behaviour of the driver. Whether it is to have a first estimation if the driver is looking to the front or if it is presenting signs of fatigue when nodding. Supporting this tool, is another that is in charge of the analysis of the colour image that will deal with the study of the eyes of the driver. From this study, it will be possible to estimate where the driver is looking at by estimating the gaze orientation through the position of the pupil. The gaze orientation would help, along with the head orientation, to have a more accurate guess regarding where the driver is looking. The gaze orientation is then a support tool that complements the head orientation. Another way to estimate a hazardous situation is with the analysis of the opening of the eyes. It can be estimated if the driver is tired through the study of the driver’s blinking pattern during a determined time. If it is so, the driver increases the chance to cause an accident due to drowsiness. The part of the whole solution that deals with solving this problem will analyse one eye of the driver to estimate if it is closed or open according to the analysis of dark regions in the image. Once the state of the eye is determined, an analysis during a determined period of time will be done in order to know if the eye was most of the time closed or open and thus estimate in a more accurate way if the driver is falling asleep or not. This 2 modules, drowsiness detector and gaze estimator, will complement the estimation of the head orientation with the goal of getting more certainty regarding the driver’s status and, when possible, to prevent an accident due to misbehaviours. It is worth to mention that the Kinect sensor is built specifically for indoor use and connected to a video console, not for the outside. Therefore, it is inevitable that some limitations arise when performing monitoring under real driving conditions. They will be discussed in this proposal. However, the algorithm presented can be used with any point-cloud based sensor (stereo cameras, time of flight cameras, laser scanners etc...); more expensive, but less sensitive compared to the former. Future works are described at the end in order to show the scalability of this proposal.La supervisión del conductor es crucial en los sistemas de asistencia a la conducción. Resulta importante monitorizarle para entender sus necesidades, patrones de movimiento y comportamiento bajo determinadas circunstancias. La disponibilidad de una herramienta precisa que supervise el comportamiento del conductor permite que varios objetivos sean alcanzados como la detección de somnolencia (analizando los movimientos de la cabeza y parpadeo) y distracción (estimando hacia donde está mirando por medio del estudio de la posición tanto de la cabeza como de los ojos). En ambos casos, una vez detectado el mal comportamiento, se podría activar una alarma del tipo adecuado según la situación que le corresponde con el objetivo de corregir su comportamiento del conductor Esta aplicación se distingue de otros sistemas avanzados de asistencia la conducción debido al hecho de que está orientada al análisis interior del vehículo en lugar del exterior. Es importante notar que las aplicaciones de supervisión interna son tan importantes como las del exterior debido a que si el conductor se duerme, un sistema de detección de peatones o vehículos sólo podrá hacer ciertas maniobras para evitar un accidente. Todo esto bajo las condiciones idóneas y circunstancias predeterminadas. Esta aplicación tiene el potencial para estimar si quien conduce está mirando hacia una zona específica que otra aplicación que detecta objetos, animales y peatones ha remarcado como importante. Aunque en el mercado existen tecnologías disponibles capaces de supervisar al conductor, estas tienen un coste prohibitivo para cierto grupo de clientela debido a que no es un producto popular (comparado con otros dispositivos para el hogar o de entretenimiento) ni existe un mercado con alta oferta y demanda de dichos dispositivos. Muchas de estas tecnologías requieren de dispositivos externos e invasivos (colocarle al conductor uno o más sensores en el cuerpo) que podrían interferir con la naturaleza de los movimientos propios de la conducción bajo condiciones sin supervisar. Las aplicaciones actuales basadas en visión por computador toman ventaja de los últimos desarrollos de la tecnología informática y el incremento en poder computacional para crear aplicaciones que se ajustan al criterio de un método no invasivo para aplicarlo a la supervisión del conductor. Tecnologías como cámaras estéreo y del tipo “tiempo de vuelo” son capaces de sobrepasar algunas de las dificultades relacionadas a las aplicaciones de visión por computador como condiciones extremas de iluminación (diurna y nocturna), saturación de los sensores de color y la falta de información de profundidad. Es cierto que la combinación y fusión de sensores puede resolver este problema por medio de múltiples escaneos de diferentes zonas o combinando la información obtenida de diversos dispositivos pero esto requeriría un paso adicional de calibración, posicionamiento e involucra un factor de dependencia de la aplicación hacia no uno sino los múltiples sensores involucrados ya que si uno de ellos falla, los resultados podrían no ser correctos. Recientemente han aparecido en el mercado de los videojuego algunos sensores, como es el caso de la barra de sensores Kinect de Microsoft, dispositivo de bajo coste, que ofrece información 3D junto con otras características adicionales y sin la necesidad de sistemas complejos de sistemas manufacturados que pueden fallar como se ha mencionado anteriormente. La solución propuesta en esta tesis supervisa al conductor por medio del uso de información diversa del sensor Kinect (información de profundidad, imágenes de color en espectro visible y en espectro infrarrojo). La fusión de información de diversas fuentes permite el uso de algoritmos en 2D y 3D con el objetivo de proveer una detección facial confiable, estimación de postura precisa y detección de características faciales como los ojos y la nariz. El sistema comparará, con una velocidad promedio superior a 10Hz, la captura inicial de la cara con el resto de las imágenes de video, la comparación la hará por medio de un algoritmo iterativo previamente configurado comprometido con el balance entre velocidad y precisión. Con tal de determinar la fiabilidad y precisión del sistema propuesto, diversas pruebas fueron realizadas para el algoritmo de estimación de postura de la cabeza con una unidad de medidas inerciales (IMU por sus siglas en inglés) situada en la parte trasera de la cabeza de los sujetos que participaron en los ensayos. Las medidas inerciales provistas por la IMU fueron usadas como punto de referencia para las pruebas de los tres grados de libertad de movimiento. Finalmente, los resultados de las pruebas fueron comparados con aquellos disponibles en la literatura actual para comprobar el rendimiento del algoritmo aquí presentado. Estimar la orientación de la cabeza es la función principal de esta propuesta ya que es la que más aporta información para la estimación del comportamiento del conductor. Sea para tener una primera estimación si ve hacia el frente o si presenta señales de fatiga al cabecear hacia abajo. Acompañando a esta herramienta, está el análisis de la imagen a color que se encargará del estudio de los ojos. A partir de dicho estudio, se podrá estimar hacia donde está viendo el conductor según la posición de la pupila. La orientación de la mirada ayudaría, junto con la orientación de la cabeza, a saber hacia dónde ve el conductor. La estimación de la orientación de la mirada es una herramienta de soporte que complementa la orientación de la cabeza. Otra forma de determinar una situación de riesgo es con el análisis de la apertura de los ojos. A través del estudio del patrón de parpadeo en el conductor durante un determinado tiempo se puede estimar si se encuentra cansado. De ser así, el conductor aumenta las posibilidades de causar un accidente debido a la somnolencia. La parte de la solución que se encarga de resolver este problema analizará un ojo del conductor para estimar si se encuentra cerrado o abierto de acuerdo al análisis de regiones de interés en la imagen. Una vez determinado el estado del ojo, se procederá a hacer un análisis durante un determinado tiempo para saber si el ojo ha estado mayormente cerrado o abierto y estimar de forma más acertada si se está quedando dormido o no. Estos 2 módulos, el detector de somnolencia y el análisis de la mirada complementarán la estimación de la orientación de la cabeza con el objetivo de brindar mayor certeza acerca del estado del conductor y, de ser posible, prevenir un accidente debido a malos comportamientos. Es importante mencionar que el sensor Kinect está construido específicamente para el uso dentro de una habitación y conectado a una videoconsola, no para el exterior. Por lo tanto, es inevitable que algunas limitaciones salgan a luz cuando se realice la monitorización bajo condiciones reales de conducción. Dichos problemas serán mencionados en esta propuesta. Sin embargo, el algoritmo presentado es generalizable a cualquier sensor basado en nubes de puntos (cámaras estéreo, cámaras del tipo “time of flight”, escáneres láseres etc...); más caros pero menos sensibles a estos inconvenientes previamente descritos. Se mencionan también trabajos futuros al final con el objetivo de enseñar la escalabilidad de esta propuesta.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Andrés Iborra García.- Secretario: Francisco José Rodríguez Urbano.- Vocal: José Manuel Pastor Garcí

    A framework for context-aware driver status assessment systems

    Get PDF
    The automotive industry is actively supporting research and innovation to meet manufacturers' requirements related to safety issues, performance and environment. The Green ITS project is among the efforts in that regard. Safety is a major customer and manufacturer concern. Therefore, much effort have been directed to developing cutting-edge technologies able to assess driver status in term of alertness and suitability. In that regard, we aim to create with this thesis a framework for a context-aware driver status assessment system. Context-aware means that the machine uses background information about the driver and environmental conditions to better ascertain and understand driver status. The system also relies on multiple sensors, mainly video and audio. Using context and multi-sensor data, we need to perform multi-modal analysis and data fusion in order to infer as much knowledge as possible about the driver. Last, the project is to be continued by other students, so the system should be modular and well-documented. With this in mind, a driving simulator integrating multiple sensors was built. This simulator is a starting point for experimentation related to driver status assessment, and a prototype of software for real-time driver status assessment is integrated to the platform. To make the system context-aware, we designed a driver identification module based on audio-visual data fusion. Thus, at the beginning of driving sessions, the users are identified and background knowledge about them is loaded to better understand and analyze their behavior. A driver status assessment system was then constructed based on two different modules. The first one is for driver fatigue detection, based on an infrared camera. Fatigue is inferred via percentage of eye closure, which is the best indicator of fatigue for vision systems. The second one is a driver distraction recognition system, based on a Kinect sensor. Using body, head, and facial expressions, a fusion strategy is employed to deduce the type of distraction a driver is subject to. Of course, fatigue and distraction are only a fraction of all possible drivers' states, but these two aspects have been studied here primarily because of their dramatic impact on traffic safety. Through experimental results, we show that our system is efficient for driver identification and driver inattention detection tasks. Nevertheless, it is also very modular and could be further complemented by driver status analysis, context or additional sensor acquisition

    Driver lane change intention inference using machine learning methods.

    Get PDF
    Lane changing manoeuvre on highway is a highly interactive task for human drivers. The intelligent vehicles and the advanced driver assistance systems (ADAS) need to have proper awareness of the traffic context as well as the driver. The ADAS also need to understand the driver potential intent correctly since it shares the control authority with the human driver. This study provides a research on the driver intention inference, particular focus on the lane change manoeuvre on highways. This report is organised in a paper basis, where each chapter corresponding to a publication, which is submitted or to be submitted. Part Ⅰ introduce the motivation and general methodology framework for this thesis. Part Ⅱ includes the literature survey and the state-of-art of driver intention inference. Part Ⅲ contains the techniques for traffic context perception that focus on the lane detection. A literature review on lane detection techniques and its integration with parallel driving framework is proposed. Next, a novel integrated lane detection system is designed. Part Ⅳ contains two parts, which provides the driver behaviour monitoring system for normal driving and secondary tasks detection. The first part is based on the conventional feature selection methods while the second part introduces an end-to-end deep learning framework. The design and analysis of driver lane change intention inference system for the lane change manoeuvre is proposed in Part Ⅴ. Finally, discussions and conclusions are made in Part Ⅵ. A major contribution of this project is to propose novel algorithms which accurately model the driver intention inference process. Lane change intention will be recognised based on machine learning (ML) methods due to its good reasoning and generalizing characteristics. Sensors in the vehicle are used to capture context traffic information, vehicle dynamics, and driver behaviours information. Machine learning and image processing are the techniques to recognise human driver behaviour.PhD in Transpor
    corecore