1,331 research outputs found

    Contains and Inside relationships within combinatorial Pyramids

    Full text link
    Irregular pyramids are made of a stack of successively reduced graphs embedded in the plane. Such pyramids are used within the segmentation framework to encode a hierarchy of partitions. The different graph models used within the irregular pyramid framework encode different types of relationships between regions. This paper compares different graph models used within the irregular pyramid framework according to a set of relationships between regions. We also define a new algorithm based on a pyramid of combinatorial maps which allows to determine if one region contains the other using only local calculus.Comment: 35 page

    Image Matching based on Curvilinear Regions

    Get PDF

    Visual Attention Mechanism for a Social Robot

    Get PDF
    This paper describes a visual perception system for a social robot. The central part of this system is an artificial attention mechanism that discriminates the most relevant information from all the visual information perceived by the robot. It is composed by three stages. At the preattentive stage, the concept of saliency is implemented based on ‘proto-objects’ [37]. From these objects, different saliency maps are generated. Then, the semiattentive stage identifies and tracks significant items according to the tasks to accomplish. This tracking process allows to implement the ‘inhibition of return’. Finally, the attentive stage fixes the field of attention to the most relevant object depending on the behaviours to carry out. Three behaviours have been implemented and tested which allow the robot to detect visual landmarks in an initially unknown environment, and to recognize and capture the upper-body motion of people interested in interact with it

    Open Issues and Chances for Topological Pyramids

    Get PDF
    High resolution image data require a huge amount of computational resources. Image pyramids have shown high performance and flexibility to reduce the amount of data while preserving the most relevant pieces of information, and still allowing fast access to those data that have been considered less important before. They are able to preserve an existing topological structure (Euler number, homology generators) when the spatial partitioning of the data is known at the time of construction. In order to focus on the topological aspects let us call this class of pyramids “topological pyramids”. We consider here four open problems, under the topological pyramids context: The minimality problem of volumes representation, the “contact”-relation representation, the orientation of gravity and time dimensions and the integration of different modalities as different topologies.Austrian Science Fund P20134-N13Junta de Andalucía FQM–296Junta de Andalucía PO6-TIC-0226

    LBP and irregular graph pyramids

    Get PDF
    In this paper, a new codification of Local Binary Patterns (LBP) is given using graph pyramids. The LBP code characterizes the topological category (local max, min, slope, saddle) of the gray level landscape around the center region. Given a 2D grayscale image I, our goal is to obtain a simplified image which can be seen as “minimal” representation in terms of topological characterization of I. For this, a method is developed based on merging regions and Minimum Contrast Algorithm

    Pyramids of n-Dimensional Generalized Maps

    Get PDF
    International audienceGraph pyramids are often used for representing irregular pyramids. Combinatorial pyramids have been recently defined for this purpose. We define here pyramids of n-dimensional generalized maps. This is the main contribution of this work: a generic definition in any dimension which extend and generalize the previous works. Moreover, such pyramids explicitly represent more topological information than graph pyramids. A pyramid can be implemented in several ways, and three representations are discussed in this paper

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation

    Multisensory 3D saliency for artficial attention systems

    Get PDF
    In this paper we present proof-of-concept for a novel solution consisting of a short-term 3D memory for artificial attention systems, loosely inspired in perceptual processes believed to be implemented in the human brain. Our solution supports the implementation of multisensory perception and stimulus-driven processes of attention. For this purpose, it provides (1) knowledge persistence with temporal coherence tackling potential salient regions outside the field of view, via a panoramic, log-spherical inference grid; (2) prediction, by using estimates of local 3D velocity to anticipate the effect of scene dynamics; (3) spatial correspondence between volumetric cells potentially occupied by proto-objects and their corresponding multisensory saliency scores. Visual and auditory signals are processed to extract features that are then filtered by a proto-object segmentation module that employs colour and depth as discriminatory traits. We consider as features, apart from the commonly used colour and intensity contrast, colour bias, the presence of faces, scene dynamics and also loud auditory sources. Combining conspicuity maps derived from these features we obtain a 2D saliency map, which is then processed using the probability of occupancy in the scene to construct the final 3D saliency map as an additional layer of the Bayesian Volumetric Map (BVM) inference grid

    Image = Structure + Few Colors

    Get PDF
    Topology plays an important role in computer vision by capturing the structure of the objects. Nevertheless, its potential applications have not been sufficiently developed yet. In this paper, we combine the topological properties of an image with hierarchical approaches to build a topology preserving irregular image pyramid (TIIP). The TIIP algorithm uses combinatorial maps as data structure which implicitly capture the structure of the image in terms of the critical points. Thus, we can achieve a compact representation of an image, preserving the structure and topology of its critical points (maxima, the minima and the saddles). The parallel algorithmic complexity of building the pyramid is O(log d) where d is the diameter of the largest object.We achieve promising results for image reconstruction using only a few color values and the structure of the image, although preserving fine details including the texture of the image
    • 

    corecore