859 research outputs found

    3D Human Pose Estimation on a Configurable Bed from a Pressure Image

    Get PDF
    Robots have the potential to assist people in bed, such as in healthcare settings, yet bedding materials like sheets and blankets can make observation of the human body difficult for robots. A pressure-sensing mat on a bed can provide pressure images that are relatively insensitive to bedding materials. However, prior work on estimating human pose from pressure images has been restricted to 2D pose estimates and flat beds. In this work, we present two convolutional neural networks to estimate the 3D joint positions of a person in a configurable bed from a single pressure image. The first network directly outputs 3D joint positions, while the second outputs a kinematic model that includes estimated joint angles and limb lengths. We evaluated our networks on data from 17 human participants with two bed configurations: supine and seated. Our networks achieved a mean joint position error of 77 mm when tested with data from people outside the training set, outperforming several baselines. We also present a simple mechanical model that provides insight into ambiguity associated with limbs raised off of the pressure mat, and demonstrate that Monte Carlo dropout can be used to estimate pose confidence in these situations. Finally, we provide a demonstration in which a mobile manipulator uses our network's estimated kinematic model to reach a location on a person's body in spite of the person being seated in a bed and covered by a blanket.Comment: 8 pages, 10 figure

    Multidimensional Capacitive Sensing for Robot-Assisted Dressing and Bathing

    Get PDF
    Robotic assistance presents an opportunity to benefit the lives of many people with physical disabilities, yet accurately sensing the human body and tracking human motion remain difficult for robots. We present a multidimensional capacitive sensing technique that estimates the local pose of a human limb in real time. A key benefit of this sensing method is that it can sense the limb through opaque materials, including fabrics and wet cloth. Our method uses a multielectrode capacitive sensor mounted to a robot's end effector. A neural network model estimates the position of the closest point on a person's limb and the orientation of the limb's central axis relative to the sensor's frame of reference. These pose estimates enable the robot to move its end effector with respect to the limb using feedback control. We demonstrate that a PR2 robot can use this approach with a custom six electrode capacitive sensor to assist with two activities of daily living-dressing and bathing. The robot pulled the sleeve of a hospital gown onto able-bodied participants' right arms, while tracking human motion. When assisting with bathing, the robot moved a soft wet washcloth to follow the contours of able-bodied participants' limbs, cleaning their surfaces. Overall, we found that multidimensional capacitive sensing presents a promising approach for robots to sense and track the human body during assistive tasks that require physical human-robot interaction.Comment: 8 pages, 16 figures, International Conference on Rehabilitation Robotics 201

    Under the Cover Infant Pose Estimation using Multimodal Data

    Full text link
    Infant pose monitoring during sleep has multiple applications in both healthcare and home settings. In a healthcare setting, pose detection can be used for region of interest detection and movement detection for noncontact based monitoring systems. In a home setting, pose detection can be used to detect sleep positions which has shown to have a strong influence on multiple health factors. However, pose monitoring during sleep is challenging due to heavy occlusions from blanket coverings and low lighting. To address this, we present a novel dataset, Simultaneously-collected multimodal Mannequin Lying pose (SMaL) dataset, for under the cover infant pose estimation. We collect depth and pressure imagery of an infant mannequin in different poses under various cover conditions. We successfully infer full body pose under the cover by training state-of-art pose estimation methods and leveraging existing multimodal adult pose datasets for transfer learning. We demonstrate a hierarchical pretraining strategy for transformer-based models to significantly improve performance on our dataset. Our best performing model was able to detect joints under the cover within 25mm 86% of the time with an overall mean error of 16.9mm. Data, code and models publicly available at https://github.com/DanielKyr/SMa

    Modeling Humans at Rest with Applications to Robot Assistance

    Get PDF
    Humans spend a large part of their lives resting. Machine perception of this class of body poses would be beneficial to numerous applications, but it is complicated by line-of-sight occlusion from bedding. Pressure sensing mats are a promising alternative, but data is challenging to collect at scale. To overcome this, we use modern physics engines to simulate bodies resting on a soft bed with a pressure sensing mat. This method can efficiently generate data at scale for training deep neural networks. We present a deep model trained on this data that infers 3D human pose and body shape from a pressure image, and show that it transfers well to real world data. We also present a model that infers pose, shape and contact pressure from a depth image facing the person in bed, and it does so in the presence of blankets. This model similarly benefits from synthetic data, which is created by simulating blankets on the bodies in bed. We evaluate this model on real world data and compare it to an existing method that requires RGB, depth, thermal and pressure imagery in the input. Our model only requires an input depth image, yet it is 12% more accurate. Our methods are relevant to applications in healthcare, including patient acuity monitoring and pressure injury prevention. We demonstrate this work in the context of robotic caregiving assistance, by using it to control a robot to move to locations on a person’s body in bed.Ph.D

    Robust Body Exposure (RoBE): A Graph-based Dynamics Modeling Approach to Manipulating Blankets over People

    Full text link
    Robotic caregivers could potentially improve the quality of life of many who require physical assistance. However, in order to assist individuals who are lying in bed, robots must be capable of dealing with a significant obstacle: the blanket or sheet that will almost always cover the person's body. We propose a method for targeted bedding manipulation over people lying supine in bed where we first learn a model of the cloth's dynamics. Then, we optimize over this model to uncover a given target limb using information about human body shape and pose that only needs to be provided at run-time. We show how this approach enables greater robustness to variation relative to geometric and reinforcement learning baselines via a number of generalization evaluations in simulation and in the real world. We further evaluate our approach in a human study with 12 participants where we demonstrate that a mobile manipulator can adapt to real variation in human body shape, size, pose, and blanket configuration to uncover target body parts without exposing the rest of the body. Source code and supplementary materials are available online.Comment: 8 pages, 9 figures, 2 table

    LInKs "Lifting Independent Keypoints" -- Partial Pose Lifting for Occlusion Handling with Improved Accuracy in 2D-3D Human Pose Estimation

    Full text link
    We present LInKs, a novel unsupervised learning method to recover 3D human poses from 2D kinematic skeletons obtained from a single image, even when occlusions are present. Our approach follows a unique two-step process, which involves first lifting the occluded 2D pose to the 3D domain, followed by filling in the occluded parts using the partially reconstructed 3D coordinates. This lift-then-fill approach leads to significantly more accurate results compared to models that complete the pose in 2D space alone. Additionally, we improve the stability and likelihood estimation of normalising flows through a custom sampling function replacing PCA dimensionality reduction previously used in prior work. Furthermore, we are the first to investigate if different parts of the 2D kinematic skeleton can be lifted independently which we find by itself reduces the error of current lifting approaches. We attribute this to the reduction of long-range keypoint correlations. In our detailed evaluation, we quantify the error under various realistic occlusion scenarios, showcasing the versatility and applicability of our model. Our results consistently demonstrate the superiority of handling all types of occlusions in 3D space when compared to others that complete the pose in 2D space. Our approach also exhibits consistent accuracy in scenarios without occlusion, as evidenced by a 7.9% reduction in reconstruction error compared to prior works on the Human3.6M dataset. Furthermore, our method excels in accurately retrieving complete 3D poses even in the presence of occlusions, making it highly applicable in situations where complete 2D pose information is unavailable
    • …
    corecore