5,966 research outputs found

    Computationally Efficient Deep Neural Network for Computed Tomography Image Reconstruction

    Full text link
    Deep-neural-network-based image reconstruction has demonstrated promising performance in medical imaging for under-sampled and low-dose scenarios. However, it requires large amount of memory and extensive time for the training. It is especially challenging to train the reconstruction networks for three-dimensional computed tomography (CT) because of the high resolution of CT images. The purpose of this work is to reduce the memory and time consumption of the training of the reconstruction networks for CT to make it practical for current hardware, while maintaining the quality of the reconstructed images. We unrolled the proximal gradient descent algorithm for iterative image reconstruction to finite iterations and replaced the terms related to the penalty function with trainable convolutional neural networks (CNN). The network was trained greedily iteration by iteration in the image-domain on patches, which requires reasonable amount of memory and time on mainstream graphics processing unit (GPU). To overcome the local-minimum problem caused by greedy learning, we used deep UNet as the CNN and incorporated separable quadratic surrogate with ordered subsets for data fidelity, so that the solution could escape from easy local minimums and achieve better image quality. The proposed method achieved comparable image quality with state-of-the-art neural network for CT image reconstruction on 2D sparse-view and limited-angle problems on the low-dose CT challenge dataset.Comment: 33 pages, 14 figures, accepted by Medical Physic

    Non-local Low-rank Cube-based Tensor Factorization for Spectral CT Reconstruction

    Full text link
    Spectral computed tomography (CT) reconstructs material-dependent attenuation images with the projections of multiple narrow energy windows, it is meaningful for material identification and decomposition. Unfortunately, the multi-energy projection dataset always contains strong complicated noise and result in the projections has a lower signal-noise-ratio (SNR). Very recently, the spatial-spectral cube matching frame (SSCMF) was proposed to explore the non-local spatial-spectrum similarities for spectral CT. The method constructs such a group by clustering up a series of non-local spatial-spectrum cubes. The small size of spatial patch for such a group make SSCMF fails to encode the sparsity and low-rank properties. In addition, the hard-thresholding and collaboration filtering operation in the SSCMF are also rough to recover the image features and spatial edges. While for all steps are operated on 4-D group, we may not afford such huge computational and memory load in practical. To avoid the above limitation and further improve image quality, we first formulate a non-local cube-based tensor instead of the group to encode the sparsity and low-rank properties. Then, as a new regularizer, Kronecker-Basis-Representation (KBR) tensor factorization is employed into a basic spectral CT reconstruction model to enhance the ability of extracting image features and protecting spatial edges, generating the non-local low-rank cube-based tensor factorization (NLCTF) method. Finally, the split-Bregman strategy is adopted to solve the NLCTF model. Both numerical simulations and realistic preclinical mouse studies are performed to validate and assess the NLCTF algorithm. The results show that the NLCTF method outperforms the other competitors

    Super-resolution MRI through Deep Learning

    Full text link
    Magnetic resonance imaging (MRI) is extensively used for diagnosis and image-guided therapeutics. Due to hardware, physical and physiological limitations, acquisition of high-resolution MRI data takes long scan time at high system cost, and could be limited to low spatial coverage and also subject to motion artifacts. Super-resolution MRI can be achieved with deep learning, which is a promising approach and has a great potential for preclinical and clinical imaging. Compared with polynomial interpolation or sparse-coding algorithms, deep learning extracts prior knowledge from big data and produces superior MRI images from a low-resolution counterpart. In this paper, we adapt two state-of-the-art neural network models for CT denoising and deblurring, transfer them for super-resolution MRI, and demonstrate encouraging super-resolution MRI results toward two-fold resolution enhancement

    Generative Adversarial Network in Medical Imaging: A Review

    Full text link
    Generative adversarial networks have gained a lot of attention in the computer vision community due to their capability of data generation without explicitly modelling the probability density function. The adversarial loss brought by the discriminator provides a clever way of incorporating unlabeled samples into training and imposing higher order consistency. This has proven to be useful in many cases, such as domain adaptation, data augmentation, and image-to-image translation. These properties have attracted researchers in the medical imaging community, and we have seen rapid adoption in many traditional and novel applications, such as image reconstruction, segmentation, detection, classification, and cross-modality synthesis. Based on our observations, this trend will continue and we therefore conducted a review of recent advances in medical imaging using the adversarial training scheme with the hope of benefiting researchers interested in this technique.Comment: 24 pages; v4; added missing references from before Jan 1st 2019; accepted to MedI

    Comparison of projection domain, image domain, and comprehensive deep learning for sparse-view X-ray CT image reconstruction

    Full text link
    X-ray Computed Tomography (CT) imaging has been widely used in clinical diagnosis, non-destructive examination, and public safety inspection. Sparse-view (sparse view) CT has great potential in radiation dose reduction and scan acceleration. However, sparse view CT data is insufficient and traditional reconstruction results in severe streaking artifacts. In this work, based on deep learning, we compared image reconstruction performance for sparse view CT reconstruction with projection domain network, image domain network, and comprehensive network combining projection and image domains. Our study is executed with numerical simulated projection of CT images from real scans. Results demonstrated deep learning networks can effectively reconstruct rich high frequency structural information without streaking artefact commonly seen in sparse view CT. A comprehensive network combining deep learning in both projection domain and image domain can get best results

    Convolutional Sparse Coding for Compressed Sensing CT Reconstruction

    Full text link
    Over the past few years, dictionary learning (DL)-based methods have been successfully used in various image reconstruction problems. However, traditional DL-based computed tomography (CT) reconstruction methods are patch-based and ignore the consistency of pixels in overlapped patches. In addition, the features learned by these methods always contain shifted versions of the same features. In recent years, convolutional sparse coding (CSC) has been developed to address these problems. In this paper, inspired by several successful applications of CSC in the field of signal processing, we explore the potential of CSC in sparse-view CT reconstruction. By directly working on the whole image, without the necessity of dividing the image into overlapped patches in DL-based methods, the proposed methods can maintain more details and avoid artifacts caused by patch aggregation. With predetermined filters, an alternating scheme is developed to optimize the objective function. Extensive experiments with simulated and real CT data were performed to validate the effectiveness of the proposed methods. Qualitative and quantitative results demonstrate that the proposed methods achieve better performance than several existing state-of-the-art methods.Comment: Accepted by IEEE TM

    Iterative PET Image Reconstruction Using Convolutional Neural Network Representation

    Full text link
    PET image reconstruction is challenging due to the ill-poseness of the inverse problem and limited number of detected photons. Recently deep neural networks have been widely and successfully used in computer vision tasks and attracted growing interests in medical imaging. In this work, we trained a deep residual convolutional neural network to improve PET image quality by using the existing inter-patient information. An innovative feature of the proposed method is that we embed the neural network in the iterative reconstruction framework for image representation, rather than using it as a post-processing tool. We formulate the objective function as a constraint optimization problem and solve it using the alternating direction method of multipliers (ADMM) algorithm. Both simulation data and hybrid real data are used to evaluate the proposed method. Quantification results show that our proposed iterative neural network method can outperform the neural network denoising and conventional penalized maximum likelihood methods

    PWLS-ULTRA: An Efficient Clustering and Learning-Based Approach for Low-Dose 3D CT Image Reconstruction

    Full text link
    The development of computed tomography (CT) image reconstruction methods that significantly reduce patient radiation exposure while maintaining high image quality is an important area of research in low-dose CT (LDCT) imaging. We propose a new penalized weighted least squares (PWLS) reconstruction method that exploits regularization based on an efficient Union of Learned TRAnsforms (PWLS-ULTRA). The union of square transforms is pre-learned from numerous image patches extracted from a dataset of CT images or volumes. The proposed PWLS-based cost function is optimized by alternating between a CT image reconstruction step, and a sparse coding and clustering step. The CT image reconstruction step is accelerated by a relaxed linearized augmented Lagrangian method with ordered-subsets that reduces the number of forward and back projections. Simulations with 2-D and 3-D axial CT scans of the extended cardiac-torso phantom and 3D helical chest and abdomen scans show that for both normal-dose and low-dose levels, the proposed method significantly improves the quality of reconstructed images compared to PWLS reconstruction with a nonadaptive edge-preserving regularizer (PWLS-EP). PWLS with regularization based on a union of learned transforms leads to better image reconstructions than using a single learned square transform. We also incorporate patch-based weights in PWLS-ULTRA that enhance image quality and help improve image resolution uniformity. The proposed approach achieves comparable or better image quality compared to learned overcomplete synthesis dictionaries, but importantly, is much faster (computationally more efficient).Comment: Accepted to IEEE Transaction on Medical Imagin

    X2CT-GAN: Reconstructing CT from Biplanar X-Rays with Generative Adversarial Networks

    Full text link
    Computed tomography (CT) can provide a 3D view of the patient's internal organs, facilitating disease diagnosis, but it incurs more radiation dose to a patient and a CT scanner is much more cost prohibitive than an X-ray machine too. Traditional CT reconstruction methods require hundreds of X-ray projections through a full rotational scan of the body, which cannot be performed on a typical X-ray machine. In this work, we propose to reconstruct CT from two orthogonal X-rays using the generative adversarial network (GAN) framework. A specially designed generator network is exploited to increase data dimension from 2D (X-rays) to 3D (CT), which is not addressed in previous research of GAN. A novel feature fusion method is proposed to combine information from two X-rays.The mean squared error (MSE) loss and adversarial loss are combined to train the generator, resulting in a high-quality CT volume both visually and quantitatively. Extensive experiments on a publicly available chest CT dataset demonstrate the effectiveness of the proposed method. It could be a nice enhancement of a low-cost X-ray machine to provide physicians a CT-like 3D volume in several niche applications

    Real-Time 2D-3D Deformable Registration with Deep Learning and Application to Lung Radiotherapy Targeting

    Full text link
    Radiation therapy presents a need for dynamic tracking of a target tumor volume. Fiducial markers such as implanted gold seeds have been used to gate radiation delivery but the markers are invasive and gating significantly increases treatment time. Pretreatment acquisition of a respiratory correlated 4DCT allows for determination of accurate motion tracking which is useful in treatment planning. We design a patient-specific motion subspace and a deep convolutional neural network to recover anatomical positions from a single fluoroscopic projection in real-time. We use this deep network to approximate the nonlinear inverse of a diffeomorphic deformation composed with radiographic projection. This network recovers subspace coordinates to define the patient-specific deformation of the lungs from a baseline anatomic position. The geometric accuracy of the subspace deformations on real patient data is similar to accuracy attained by original image registration between individual respiratory-phase image volumes
    • …
    corecore