106 research outputs found

    Definition of topographic organization of skull profile In normal population and its implication on the role of sutures in skull morphology

    Get PDF
    ObjectivesThe geometric configuration of skull is complex and unique to each individual. The main objectives of this study are two fold: 1) to provide a new technique to define the outline of skull profile and 2) to find the common factors defining the ultimate skull configuration in adult population. The secondary objective was to explore the effect of age and sex on skull shape formation.Materials & Methods Ninety-three lateral skull x-ray from the CT scan films were selected and digitized. The lateral skull surface was divided into 3 regions based on the presumed location of coronal and lambdoid sutures. A software program (Canvas 7) was used to match the outer surface of lateral skull with circular curves. Three main curvatures (frontal, parietal, occipital) were consistently identified to overlap the skull periphery. The radius, cord length and inclination of each curvature were measured.. Factor analysis technique was also used to reduce the number of variables explaining the overall shape of skull. Student t-test and regression analysis was also used to explore the effect of sex and age on skull shape. Results There were total of 93 patients in this study (54% male). The average values for three defined curvatures of the skull profile were recorded. Factor analysis produced 3 factors. The first factor explained 32% of total variance and was related to the overall size of the head as represented by total length and the radius of the curvature in vertex and back of the head. The second factor covered 26% of the variance representing the inverse correlation between the angle of the frontal and parietal curves. The third factor revealed the direct correlation of occipital and parietal angle. In all of these factors, the frontal zone variation was independent or opposite of the parieto-occipital zone. A strong direct association between the total length of skull, occipital curve radius and length with the sex was shown. No age related variable was identified.Conclusions There is a large variation in the values of different part of the skull. The skull profile topography can be defined mathematically by two distinct territories: frontal and parieto-occipital zones. These territories hinge on the coronal suture. Therefore, coronal suture may play a dominant role in final skull configuration

    Nonlinear Dimensionality Reduction for the Thermodynamics of Small Clusters of Particles

    Get PDF
    This work employs tools and methods from computer science to study clusters comprising a small number N of interacting particles, which are of interest in science, engineering, and nanotechnology. Specifically, the thermodynamics of such clusters is studied using techniques from spectral graph theory (SGT) and machine learning (ML). SGT is used to define the structure of the clusters and ML is used on ensembles of cluster configurations to detect state variables that can be used to model the thermodynamic properties of the system. While the most fundamental description of a cluster is in 3N dimensions, i.e., the Cartesian coordinates of the particles, the ML results demonstrate that sub-spaces of much lower dimension can describe the observed structural motifs. Furthermore, these sub-spaces correlate with meaningful physical variables such as radius of gyration r g and discrete connectivity c, which can be used as state variables in thermodynamic property descriptions. The overarching theme of this thesis is to develop the practice of utilizing data-driven computational techniques to solve problems in natural sciences. Code for this project can be found at https://github.com/AdityaDendukuri/DimReductionThermodynamics

    Study on the design of DIY social robots

    Get PDF

    Brain-Inspired Computing

    Get PDF
    This open access book constitutes revised selected papers from the 4th International Workshop on Brain-Inspired Computing, BrainComp 2019, held in Cetraro, Italy, in July 2019. The 11 papers presented in this volume were carefully reviewed and selected for inclusion in this book. They deal with research on brain atlasing, multi-scale models and simulation, HPC and data infra-structures for neuroscience as well as artificial and natural neural architectures

    Assessment of monthly rain fade in the equatorial region at C & KU-band using measat-3 satellite links

    Get PDF
    C & Ku-band satellite communication links are the most commonly used for equatorial satellite communication links. Severe rainfall rate in equatorial regions can cause a large rain attenuation in real compared to the prediction. ITU-R P. 618 standards are commonly used to predict satellite rain fade in designing satellite communication network. However, the prediction of ITU-R is still found to be inaccurate hence hinder a reliable operational satellite communication link in equatorial region. This paper aims to provide an accurate insight by assessment of the monthly C & Ku-band rain fade performance by collecting data from commercial earth stations using C band and Ku-band antenna with 11 m and 13 m diameter respectively. The antennas measure the C & Ku-band beacon signal from MEASAT-3 under equatorial rain conditions. The data is collected for one year in 2015. The monthly cumulative distribution function is developed based on the 1-year data. RMSE analysis is made by comparing the monthly measured data of C-band and Ku-band to the ITU-R predictions developed based on ITU-R’s P.618, P.837, P.838 and P.839 standards. The findings show that Ku-band produces an average of 25 RMSE value while the C-band rain attenuation produces an average of 2 RMSE value. Therefore, the ITU-R model still under predicts the rain attenuation in the equatorial region and this call for revisit of the fundamental quantity in determining the rain fade for rain attenuation to be re-evaluated

    Proceedings of the 2019 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    In 2019 fand wieder der jährliche Workshop des Fraunhofer IOSB und des Lehrstuhls für Interaktive Echtzeitsysteme des Karlsruher Insitut für Technologie statt. Die Doktoranden beider Institutionen präsentierten den Fortschritt ihrer Forschung in den Themen Maschinelles Lernen, Machine Vision, Messtechnik, Netzwerksicherheit und Usage Control. Die Ideen dieses Workshops sind in diesem Buch gesammelt in der Form technischer Berichte

    Accountable, Explainable Artificial Intelligence Incorporation Framework for a Real-Time Affective State Assessment Module

    Get PDF
    The rapid growth of artificial intelligence (AI) and machine learning (ML) solutions has seen it adopted across various industries. However, the concern of ‘black-box’ approaches has led to an increase in the demand for high accuracy, transparency, accountability, and explainability in AI/ML approaches. This work contributes through an accountable, explainable AI (AXAI) framework for delineating and assessing AI systems. This framework has been incorporated into the development of a real-time, multimodal affective state assessment system
    • …
    corecore