599 research outputs found

    Laser Ultrasound Inspection Based on Wavelet Transform and Data Clustering for Defect Estimation in Metallic Samples

    Get PDF
    Laser-generated ultrasound is a modern non-destructive testing technique. It has been investigated over recent years as an alternative to classical ultrasonic methods, mainly in industrial maintenance and quality control procedures. In this study, the detection and reconstruction of internal defects in a metallic sample is performed by means of a time-frequency analysis of ultrasonic waves generated by a laser-induced thermal mechanism. In the proposed methodology, we used wavelet transform due to its multi-resolution time frequency characteristics. In order to isolate and estimate the corresponding time of flight of eventual ultrasonic echoes related to internal defects, a density-based spatial clustering was applied to the resulting time frequency maps. Using the laser scan beam’s position, the ultrasonic transducer’s location and the echoes’ arrival times were determined, the estimation of the defect’s position was carried out afterwards. Finally, clustering algorithms were applied to the resulting geometric solutions from the set of the laser scan points which was proposed to obtain a two-dimensional projection of the defect outline over the scan plane. The study demonstrates that the proposed method of wavelet transform ultrasonic imaging can be effectively applied to detect and size internal defects without any reference information, which represents a valuable outcome for various applications in the industry. View Full-TextPeer ReviewedPostprint (published version

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Fully Noncontact Hybrid NDT for 3D Defect Reconstruction Using SAFT Algorithm and 2D Apodization Window

    Get PDF
    [EN] Nondestructive testing of metallic objects that may contain embedded defects of different sizes is an important application in many industrial branches for quality control. Most of these techniques allow defect detection and its approximate localization, but few methods give enough information for its 3D reconstruction. Here we present a hybrid laser-transducer system that combines remote, laser-generated ultrasound excitation and noncontact ultrasonic transducer detection. This fully noncontact method allows access to scan areas on different object's faces and defect details from different angles/perspectives. This hybrid system can analyze the object's volume data and allows a 3D reconstruction image of the embedded defects. As a novelty for signal processing improvement, we use a 2D apodization window filtering technique, applied along with the synthetic aperture focusing algorithm, to remove the undesired effects due to side lobes and wide-angle reflections of propagating ultrasound waves, thus enhancing the resulting 3D image of the defect. Finally, we provide both qualitative and quantitative volumetric results that yield valuable information about defect location and size.The work was supported by Spanish Ministry of Economy and Innovation (MINECO) and European Union FEDER through project FIS2015-65998-C2-1 and FIS2015-65998-C2-2 and by project AICO/2016/060 by Conselleria de Educacion, Investigacion, Cultura y Deporte de la Generalitat Valenciana. H. Selim, J. Trull and C. Cojocaru acknowledge partial support from US Army Research, Development, and Engineering Command (RDECOM) through project W911NF-16-1-0563.Selim, H.; Trull, J.; Delgado, M.; Picó Vila, R.; Romeral, L.; Cojocaru, C. (2019). Fully Noncontact Hybrid NDT for 3D Defect Reconstruction Using SAFT Algorithm and 2D Apodization Window. Sensors. 19(9):1-15. https://doi.org/10.3390/s19092138S115199Her, S.-C., & Lin, S.-T. (2014). Non-Destructive Evaluation of Depth of Surface Cracks Using Ultrasonic Frequency Analysis. Sensors, 14(9), 17146-17158. doi:10.3390/s140917146Mi, B., Michaels, J. E., & Michaels, T. E. (2006). An ultrasonic method for dynamic monitoring of fatigue crack initiation and growth. The Journal of the Acoustical Society of America, 119(1), 74-85. doi:10.1121/1.2139647Cheng, Y., Deng, Y., Cao, J., Xiong, X., Bai, L., & Li, Z. (2013). Multi-Wave and Hybrid Imaging Techniques: A New Direction for Nondestructive Testing and Structural Health Monitoring. Sensors, 13(12), 16146-16190. doi:10.3390/s131216146Delrue, S., Van Den Abeele, K., Blomme, E., Deveugele, J., Lust, P., & Matar, O. B. (2010). Two-dimensional simulation of the single-sided air-coupled ultrasonic pitch-catch technique for non-destructive testing. Ultrasonics, 50(2), 188-196. doi:10.1016/j.ultras.2009.08.005Delrue, S., Tabatabaeipour, M., Hettler, J., & Van Den Abeele, K. (2016). Applying a nonlinear, pitch-catch, ultrasonic technique for the detection of kissing bonds in friction stir welds. Ultrasonics, 68, 71-79. doi:10.1016/j.ultras.2016.02.012Bai, Z., Chen, S., Xiao, Q., Jia, L., Zhao, Y., & Zeng, Z. (2017). Compressive sensing of phased array ultrasonic signal in defect detection: Simulation study and experimental verification. Structural Health Monitoring, 17(3), 434-449. doi:10.1177/1475921717701462Ciampa, F., Mankar, A., & Marini, A. (2017). Phononic Crystal Waveguide Transducers for Nonlinear Elastic Wave Sensing. Scientific Reports, 7(1). doi:10.1038/s41598-017-14594-4Miniaci, M., Gliozzi, A. S., Morvan, B., Krushynska, A., Bosia, F., Scalerandi, M., & Pugno, N. M. (2017). Proof of Concept for an Ultrasensitive Technique to Detect and Localize Sources of Elastic Nonlinearity Using Phononic Crystals. Physical Review Letters, 118(21). doi:10.1103/physrevlett.118.214301Tiwari, K. A., Raisutis, R., Tumsys, O., Ostreika, A., Jankauskas, K., & Jakutavicius, J. (2019). Defect Estimation in Non-Destructive Testing of Composites by Ultrasonic Guided Waves and Image Processing. Electronics, 8(3), 315. doi:10.3390/electronics8030315Le, M., Kim, J., Kim, S., & Lee, J. (2016). Nondestructive testing of pitting corrosion cracks in rivet of multilayer structures. International Journal of Precision Engineering and Manufacturing, 17(11), 1433-1442. doi:10.1007/s12541-016-0169-7Selim, H., Delgado Prieto, M., Trull, J., Romeral, L., & Cojocaru, C. (2019). Laser Ultrasound Inspection Based on Wavelet Transform and Data Clustering for Defect Estimation in Metallic Samples. Sensors, 19(3), 573. doi:10.3390/s19030573Prada, C., Kerbrat, E., Cassereau, D., & Fink, M. (2002). Time reversal techniques in ultrasonic nondestructive testing of scattering media. Inverse Problems, 18(6), 1761-1773. doi:10.1088/0266-5611/18/6/320Spies, M., Rieder, H., Dillhöfer, A., Schmitz, V., & Müller, W. (2012). Synthetic Aperture Focusing and Time-of-Flight Diffraction Ultrasonic Imaging—Past and Present. Journal of Nondestructive Evaluation, 31(4), 310-323. doi:10.1007/s10921-012-0150-zTiwari, K., Raisutis, R., & Samaitis, V. (2017). Hybrid Signal Processing Technique to Improve the Defect Estimation in Ultrasonic Non-Destructive Testing of Composite Structures. Sensors, 17(12), 2858. doi:10.3390/s17122858Boonsang, S., Zainal, J., & Dewhurst, R. J. (2004). Synthetic aperture focusing techniques in time and frequency domains for photoacoustic imaging. Insight - Non-Destructive Testing and Condition Monitoring, 46(4), 196-199. doi:10.1784/insi.46.4.196.55648Guarneri, G., Pipa, D., Junior, F., de Arruda, L., & Zibetti, M. (2015). A Sparse Reconstruction Algorithm for Ultrasonic Images in Nondestructive Testing. Sensors, 15(4), 9324-9343. doi:10.3390/s150409324Gómez, M., Castejón, C., & García-Prada, J. (2016). Review of Recent Advances in the Application of the Wavelet Transform to Diagnose Cracked Rotors. Algorithms, 9(1), 19. doi:10.3390/a9010019Selim, H., Delgado, M., Trull, J., Picó, R., & Cojocaru, C. (2018). Material Defect Reconstruction by Non-Destructive Testing with Laser Induced Ultrasonics. Journal of Physics: Conference Series, 1149, 012011. doi:10.1088/1742-6596/1149/1/012011De Marchi, L., Marzani, A., & Miniaci, M. (2013). A dispersion compensation procedure to extend pulse-echo defects location to irregular waveguides. NDT & E International, 54, 115-122. doi:10.1016/j.ndteint.2012.12.009Krohn, N., Pfleiderer, K., Stoessel, R., Solodov, I., & Busse, G. (2004). Nonlinear Acoustic Imaging: Fundamentals, Methodology, and NDE-Applications. Acoustical Imaging, 91-98. doi:10.1007/978-1-4020-2402-3_12Ulrich, T. J., Johnson, P. A., & Sutin, A. (2006). Imaging nonlinear scatterers applying the time reversal mirror. The Journal of the Acoustical Society of America, 119(3), 1514-1518. doi:10.1121/1.2168413Miniaci, M., Mazzotti, M., Radzieński, M., Kudela, P., Kherraz, N., Bosia, F., … Ostachowicz, W. (2019). Application of a Laser-Based Time Reversal Algorithm for Impact Localization in a Stiffened Aluminum Plate. Frontiers in Materials, 6. doi:10.3389/fmats.2019.00030Kreis, T. (2016). Application of Digital Holography for Nondestructive Testing and Metrology: A Review. IEEE Transactions on Industrial Informatics, 12(1), 240-247. doi:10.1109/tii.2015.2482900Zhang, K., Zhou, Z., & Zhou, J. (2015). Application of laser ultrasonic method for on-line monitoring of friction stir spot welding process. Applied Optics, 54(25), 7483. doi:10.1364/ao.54.007483Streza, M., Dadarlat, D., Fedala, Y., & Longuemart, S. (2013). Depth estimation of surface cracks on metallic components by means of lock-in thermography. Review of Scientific Instruments, 84(7), 074902. doi:10.1063/1.4813744Jensen, J. A., Nikolov, S. I., Gammelmark, K. L., & Pedersen, M. H. (2006). Synthetic aperture ultrasound imaging. Ultrasonics, 44, e5-e15. doi:10.1016/j.ultras.2006.07.017Ultrasonic Transducers. Vol. Pana_UT_ENhttp://www.epsilon-ndt.com/upload/file/problar-ve-aksesuarlar-.pdfCong, S., Zhang, W. W., Zhang, J. Y., & Gang, T. (2017). Analysis on Ultrasonic TOFD Imaging Testing for Ultra-thick-walled EBW Joint of Aluminum Alloy. Procedia Engineering, 207, 1910-1915. doi:10.1016/j.proeng.2017.10.960Wang, X.-G., Wu, W.-L., Huang, Z.-C., Chang, J.-J., & Wu, N.-X. (2018). Research on the Transmission Characteristics of Air-Coupled Ultrasound in Double-Layered Bonded Structures. Materials, 11(2), 310. doi:10.3390/ma1102031

    Hybrid non-destructive technique for volumetric defect analysis and reconstruction by remote laser induced ultrasound

    Get PDF
    This PhD thesis is devoted to the design, development and implementation of a non-contact hybrid non-destructive testing (NDT) method applied to the analysis of metallic objects that contain embedded defects or fractures. We propose a hybrid opto-acoustic technique that combines laser generated ultrasound as exciter and ultrasound transducers as receivers. This work envisages a detailed study of the detection and one, two or three-dimensional reconstruction of defects, using the proposed hybrid technique and its application as a remotely controlled non-contact NDT. Our device combines several advantages of both photonic and ultrasonic techniques, while reduces some of the drawbacks of both individual methods. Our method relay on the combination of experimental results with high-resolution signal processing procedures based on different mathematical algorithms. Our basic experimental setup uses a nanosecond pulsed laser at 532nm wavelength that impacts onto the surface of the object under study. The laser pulse is rapidly absorbed into a shallow volume of material and creates a localized thermo-elastic expansion inducing a broadband ultrasound pulse that propagate inside the material. The laser beam scans a selected area of the object surface, being remotely controlled by means of a programmable XY scanner. For each excitation point, the ultrasound waves propagate through the object are reflected or scattered by material 3D defects. They are detected by ultrasound transducers and recorded with a PC data-acquisition system for a further process and analysis. As a first step, the time of flight analysis provides enough data for the location and size of the defect in 1D view. The detection capabilities of internal defects in a metallic sample are studied by means of wavelet transform, chosen due to its multi-resolution time-frequency characteristics. A novel algorithm using a density-based spatial clustering is applied to the resulting time frequency maps to estimate the defect’s position. For the 2D visualization and reconstruction of the defects we extended the signal analysis using the synthetic aperture focusing technique (SAFT). We implement a novel 2D apodization window filtering applied along with the SAFT, and we show it removes undesired effects of the side lobes and wide-angle reflections of ultrasound waves, enhancing the reconstructed image of the defect. We move then towards the 3D analysis and reconstruction of defects and in this case we achieve and implement a fully non-contact and automatized experimental configuration allowing the scan areas on different object’s faces. The defect details are recorded from different angles/perspectives and a complete 3D reconstruction is achieved. Finally, we show our results on a complementary topic related to a particular case of the ultrasound propagation in solids. We were concerned on the physical understanding of the propagation and diffraction of ultrasound waves in solid materials from the first moment. The control of the diffraction pattern in solids, using an ultrasonic lens, would help focus/collimate the ultrasound reducing echoes and boundary reflections, resulting in a further improve NDT process. Phononic crystals have been used to regulate the diffraction and frequency response of ultrasonic waves traveling in fluids. However, they were much less studied in solid materials due to the difficulty of building the crystal and to high coupling losses. We perform detailed numerical simulations of the ultrasound propagation in a solid phononic crystal and we show focusing and the self-collimation effects. We further extend our analysis and couple our phononic crystal lens to a solid under study, showing that the diffraction control is preserved inside the target solid object trough the coupling material.Esta tesis doctoral versa sobre el diseño, estudio e implementación de un método híbrido, sin contacto, de ensayos no destructivos (NDT, non-destructive testing) para el análisis de objetos metálicos que contienen defectos o fracturas internas. Proponemos una técnica híbrida opto-acústica que combina ultrasonidos generados por impacto láser como excitador y transductores de ultrasonidos como receptores. El trabajo plantea un estudio detallado de la detección y reconstrucción en 1D, 2D y 3D de defectos presentes en un objeto metálico, usando la técnica híbrida de NDT sin contacto y controlado remotamente. Nuestro dispositivo presenta varias ventajas de las técnicas fotónicas y de ultrasonidos, reduciendo al mismo tiempo algunos inconvenientes de dichos métodos tomados por separado. Nuestro método combina resultados experimentales con simulaciones numéricas basadas en el procesado de señal de alta resolución. El montaje experimental consiste en un láser pulsado de ns a una longitud de onda de 532 nm, que impacta sobre la superficie del objeto. El pulso láser se absorbe, creando una expansión termoelástica localizada que induce un pulso de ultrasonidos de banda ancha que se propaga en el material. El láser, controlado remotamente, realiza un barrido sobre un área seleccionada de la superficie del objeto. Por cada punto de excitación, el ultrasonido se propaga a través del objeto y se refleja o dispersa en los defectos del material. Dichas ondas se detectan mediante transductores y se registran en un sistema de adquisición de datos para su ulterior procesado. En un primer paso, mediante el análisis del tiempo de vuelo, podemos localizar y determinar el tamaño del defecto en una vista 1D. Las capacidades de detección de defectos internos en una muestra metálica se estudian también mediante transformación wavelet debido a sus características de multi-resolución en tiempo y frecuencia. Se aplica un algoritmo novedoso de agrupamiento (clustering) espacial y se usan los mapas resultantes de tiempo y frecuencia para estimar la posición del defecto. Para la visualización 2D de los defectos ampliamos el análisis de la señal utilizando la técnica de focalización por apertura sintética (SAFT, synthetic aperture focusing technique). Implementamos un novedoso filtro de apodización 2D, juntamente con la técnica SAFT, y demostramos que elimina efectos no deseados, mejorando la resolución de la imagen reconstruida del defecto. El siguiente paso es un análisis y reconstrucción 3D. En este caso conseguimos una configuración experimental totalmente automatizada y sin contacto, permitiendo áreas de barrido sobre diferentes caras de un objeto. Los detalles de los defectos se registran desde diferentes ángulos, consiguiéndose una completa reconstrucción 3D. Finalmente, mostramos nuestros resultados en un tema complementario, relacionado con un caso particular de propagación de ultrasonidos en sólidos. Desde un primer momento, quisimos tener una comprensión física de la propagación y difracción de ondas de ultrasonidos en materiales sólidos. El control de los patrones de difracción en sólidos, mediante el uso de lentes ultrasónicas, ayudaría a la focalización/colimación del ultrasonido, reduciendo ecos y reflexiones en la superficie de contorno, mejorando del proceso de análisis NDT. Los cristales fonónicos se usan para regular la difracción y la respuesta en frecuencia de ondas de ultrasonido que se propagan en fluidos. No obstante, dichas estructuras se han estudiado mucho menos en materiales sólidos. Hemos realizado detalladas simulaciones numéricas de la propagación de ultrasonidos en un cristal fonónico sólido y hemos demostrado efectos de focalización y autocolimación. Finalmente hemos acoplado nuestra lente de cristal fonónico al sólido objeto de estudio, demostrando que el control de la difracción se conserva en el interior de dicho objeto a través del material de acoplamiento. Finalmente, proporcionamos una conclusión general sobre el trabajo declarado en esta tesis y un plan de trabajo futuro donde esta investigación puede extenderse y expandirse aún más a aplicaciones industriales en colaboración con el mercado de producciónPostprint (published version

    Design of Autonomous Cleaning Robot

    Get PDF
    Today, the research is concentrated on designing and developing robots to address the challenges of human life in their everyday activities. The cleaning robots are the class of service robots whose demands are increasing exponentially. Nevertheless, the application of cleaning robots is confined to smaller areas such as homes. Not much autonomous cleaning products are commercialized for big areas such as schools, hospitals, malls, etc. In this thesis, the proof of concept is designed for the autonomous floor-cleaning robot and autonomous board-cleaning robot for schools. A thorough background study is conducted on domestic service robots to understand the technologies involved in these robots. The components of the vacuum cleaner are assembled on a commercial robotic platform. The principles of vacuum cleaning technology and airflow equations are employed for the component selection of the vacuum cleaner. As the autonomous board-cleaning robot acts against gravity, a magnetic adhesion is used to adhere the robot to the classroom board. This system uses a belt drive mechanism to manoeurve. The use of belt drive increases the area of magnetic attraction while the robot is in motion. A semi-systematic approach using patterned path planning techniques for the complete coverage of the working environment is discussed in this thesis. The outcome of this thesis depicts a new and conceptual mechanical design of an autonomous floor-cleaning robot and an autonomous board-cleaning robot. This evidence creates a preliminary design for proof-of-concept for these robots. This proof of concept design is developed from the basic equations of vacuum cleaning technology, airflow and magnetic adhesion. A general overview is discussed for collaborating the two robots. This research provides an extensive initial step to illustrate the development of an autonomous cleaning robot and further validates with quantitative data discussed in the thesis

    Real Time Sequential Non Rigid Structure from motion using a single camera

    Get PDF
    En la actualidad las aplicaciones que basan su funcionamiento en una correcta localización y reconstrucción dentro de un entorno real en 3D han experimentado un gran interés en los últimos años, tanto por la comunidad investigadora como por la industrial. Estas aplicaciones varían desde la realidad aumentada, la robótica, la simulación, los videojuegos, etc. Dependiendo de la aplicación y del nivel de detalle de la reconstrucción, se emplean diversos dispositivos, algunos específicos, más complejos y caros como las cámaras estéreo, cámara y profundidad (RGBD) con Luz estructurada y Time of Flight (ToF), así como láser y otros más avanzados. Para aplicaciones sencillas es suficiente con dispositivos de uso común, como los smartphones, en los que aplicando técnicas de visión artificial, se pueden obtener modelos 3D del entorno para, en el caso de la realidad aumentada, mostrar información aumentada en la ubicación seleccionada.En robótica, la localización y generación simultáneas de un mapa del entorno en 3D es una tarea fundamental para conseguir la navegación autónoma. Este problema se conoce en el estado del arte como Simultaneous Localization And Mapping (SLAM) o Structure from Motion (SfM). Para la aplicación de estas técnicas, el objeto no ha de cambiar su forma a lo largo del tiempo. La reconstrucción es unívoca salvo factor de escala en captura monocular sin referencia. Si la condición de rigidez no se cumple, es porque la forma del objeto cambia a lo largo del tiempo. El problema sería equivalente a realizar una reconstrucción por fotograma, lo cual no se puede hacer de manera directa, puesto que diferentes formas, combinadas con diferentes poses de cámara pueden dar proyecciones similares. Es por esto que el campo de la reconstrucción de objetos deformables es todavía un área en desarrollo. Los métodos de SfM se han adaptado aplicando modelos físicos, restricciones temporales, espaciales, geométricas o de otros tipos para reducir la ambigüedad en las soluciones, naciendo así las técnicas conocidas como Non-Rigid SfM (NRSfM).En esta tesis se propone partir de una técnica de reconstrucción rígida bien conocida en el estado del arte como es PTAM (Parallel Tracking and Mapping) y adaptarla para incluir técnicas de NRSfM, basadas en modelo de bases lineales para estimar las deformaciones del objeto modelado dinámicamente y aplicar restricciones temporales y espaciales para mejorar las reconstrucciones, además de ir adaptándose a cambios de deformación que se presenten en la secuencia. Para ello, hay que realizar cambios de manera que cada uno de sus hilos de ejecución procesen datos no rígidos.El hilo encargado del seguimiento ya realizaba seguimiento basado en un mapa de puntos 3D, proporcionado a priori. La modificación más importante aquí es la integración de un modelo de deformación lineal para que se realice el cálculo de la deformación del objeto en tiempo real, asumiendo fijas las formas básicas de deformación. El cálculo de la pose de la cámara está basado en el sistema de estimación rígido, por lo que la estimación de pose y coeficientes de deformación se hace de manera alternada usando el algoritmo E-M (Expectation-Maximization). También, se imponen restricciones temporales y de forma para restringir las ambigüedades inherentes en las soluciones y mejorar la calidad de la estimación 3D.Respecto al hilo que gestiona el mapa, se actualiza en función del tiempo para que sea capaz de mejorar las bases de deformación cuando éstas no son capaces de explicar las formas que se ven en las imágenes actuales. Para ello, se sustituye la optimización de modelo rígido incluida en este hilo por un método de procesamiento exhaustivo NRSfM, para mejorar las bases acorde a las imágenes con gran error de reconstrucción desde el hilo de seguimiento. Con esto, el modelo se consigue adaptar a nuevas deformaciones, permitiendo al sistema evolucionar y ser estable a largo plazo.A diferencia de una gran parte de los métodos de la literatura, el sistema propuesto aborda el problema de la proyección perspectiva de forma nativa, minimizando los problemas de ambigüedad y de distancia al objeto existente en la proyección ortográfica. El sistema propuesto maneja centenares de puntos y está preparado para cumplir con restricciones de tiempo real para su aplicación en sistemas con recursos hardware limitados

    Estimation of the Concentration from a Moving Gaseous Source in the Atmosphere Using a Guided Sensing Aerial Vehicle

    Get PDF
    The estimation of the gas concentration (process-state) associated with a stationary or moving source using a sensing aerial vehicle (SAV) is considered. The dispersion from such a gaseous source into the ambient atmosphere is representative of an accidental or deliberate release of chemicals, or a release of gases from biological systems. Estimation of the concentration field provides a superior ability for source localization, assessment of possible adverse impacts, and eventual containment. The abstract and finite-dimensional approximation framework presented couples theoretical estimation and control with computational fluid dynamics methods. The gas dispersion (process) model is based on the advection-diffusion equation with variable eddy diffusivities and ambient winds. Cases are considered for a 2D and 3D domain. The state estimator is a modified Luenberger observer with a €�collocated€� filter gain that is parameterized by the position of the SAV. The process-state (concentration) estimator is based on a 2D and 3D adaptive, multigrid, multi-step finite-volume method. The grid is adapted with local refinement and coarsening during the process-state estimation in order to improve accuracy and efficiency. The motion dynamics of the SAV are incorporated into the spatial process and the SAV€™s guidance is directly linked to the performance of the state estimator. The computational model and the state estimator are coupled in the sense that grid-refinement is affected by the SAV repositioning, and the guidance laws of the SAV are affected by grid-refinement. Extensive numerical experiments serve to demonstrate the effectiveness of the coupled approach

    Acquisition and Documentation of Vessels using High-Resolution 3D-Scanners

    Get PDF

    Global rigid registration of CT to video in laparoscopic liver surgery

    Get PDF
    PURPOSE: Image-guidance systems have the potential to aid in laparoscopic interventions by providing sub-surface structure information and tumour localisation. The registration of a preoperative 3D image with the intraoperative laparoscopic video feed is an important component of image guidance, which should be fast, robust and cause minimal disruption to the surgical procedure. Most methods for rigid and non-rigid registration require a good initial alignment. However, in most research systems for abdominal surgery, the user has to manually rotate and translate the models, which is usually difficult to perform quickly and intuitively. METHODS: We propose a fast, global method for the initial rigid alignment between a 3D mesh derived from a preoperative CT of the liver and a surface reconstruction of the intraoperative scene. We formulate the shape matching problem as a quadratic assignment problem which minimises the dissimilarity between feature descriptors while enforcing geometrical consistency between all the feature points. We incorporate a novel constraint based on the liver contours which deals specifically with the challenges introduced by laparoscopic data. RESULTS: We validate our proposed method on synthetic data, on a liver phantom and on retrospective clinical data acquired during a laparoscopic liver resection. We show robustness over reduced partial size and increasing levels of deformation. Our results on the phantom and on the real data show good initial alignment, which can successfully converge to the correct position using fine alignment techniques. Furthermore, since we can pre-process the CT scan before surgery, the proposed method runs faster than current algorithms. CONCLUSION: The proposed shape matching method can provide a fast, global initial registration, which can be further refined by fine alignment methods. This approach will lead to a more usable and intuitive image-guidance system for laparoscopic liver surgery
    • …
    corecore