1,612 research outputs found

    Tracking an elastic object with an RGB-D sensor for a pizza chef robot

    Get PDF
    This paper presents a method to track in real-time a 3D object which undergoes large deformations such as elastic ones, and fast rigid motions, using the point cloud data provided by a RGB-D sensor. This solution would contribute to robotic humanoid manipulation purposes. Our framework relies on a prior visual segmentation of the object in the image. The segmented point cloud is then registered first in a rigid manner and then by non-rigidly fitting the mesh, based on the Finite Element Method to model elasticity and on geometrical point-to-point correspondences to compute external forces exerted on the mesh. The real-time performance of the system is demonstrated on real data involving challenging deformations and motions, for a pizza dough to be ideally manipulated by a chef robot

    Survey on model-based manipulation planning of deformable objects

    Get PDF
    A systematic overview on the subject of model-based manipulation planning of deformable objects is presented. Existing modelling techniques of volumetric, planar and linear deformable objects are described, emphasizing the different types of deformation. Planning strategies are categorized according to the type of manipulation goal: path planning, folding/unfolding, topology modifications and assembly. Most current contributions fit naturally into these categories, and thus the presented algorithms constitute an adequate basis for future developments.Preprin

    Planning Framework for Robotic Pizza Dough Stretching with a Rolling Pin

    Get PDF
    Stretching a pizza dough with a rolling pin is a nonprehensile manipulation. Since the object is deformable, force closure cannot be established, and the manipulation is carried out in a nonprehensile way. The framework of this pizza dough stretching application that is explained in this chapter consists of four sub-procedures: (i) recognition of the pizza dough on a plate, (ii) planning the necessary steps to shape the pizza dough to the desired form, (iii) path generation for a rolling pin to execute the output of the pizza dough planner, and (iv) inverse kinematics for the bi-manual robot to grasp and control the rolling pin properly. Using the deformable object model described in Chap. 3, each sub-procedure of the proposed framework is explained sequentially

    Learning Shape Control of Elastoplastic Deformable Linear Objects

    Full text link
    Deformable object manipulation tasks have long been regarded as challenging robotic problems. However, until recently very little work has been done on the subject, with most robotic manipulation methods being developed for rigid objects. Deformable objects are more difficult to model and simulate, which has limited the use of model-free Reinforcement Learning (RL) strategies, due to their need for large amounts of data that can only be satisfied in simulation. This paper proposes a new shape control task for Deformable Linear Objects (DLOs). More notably, we present the first study on the effects of elastoplastic properties on this type of problem. Objects with elastoplasticity such as metal wires, are found in various applications and are challenging to manipulate due to their nonlinear behavior. We first highlight the challenges of solving such a manipulation task from an RL perspective, particularly in defining the reward. Then, based on concepts from differential geometry, we propose an intrinsic shape representation using discrete curvature and torsion. Finally, we show through an empirical study that in order to successfully solve the proposed task using Deep Deterministic Policy Gradient (DDPG), the reward needs to include intrinsic information about the shape of the DLO

    RGB-D Tracking and Optimal Perception of Deformable Objects

    Get PDF
    Addressing the perception problem of texture-less objects that undergo large deformations and movements, this article presents a novel RGB-D learning-free deformable object tracker in combination with a camera position optimisation system for optimal deformable object perception. The approach is based on the discretisation of the object''s visible area through the generation of a supervoxel graph that allows weighting new supervoxel candidates between object states over time. Once a deformation state of the object is determined, supervoxels of its associated graph serve as input for the camera position optimisation problem. Satisfactory results have been obtained in real time with a variety of objects that present different deformation characteristics
    • …
    corecore