746 research outputs found

    Problems in GPS Accuracy

    Get PDF
    Improving and predicting the accuracy of positioning estimates derived from the global positioning system (GPS) continues to be a problem of great interest. Dependable and accurate positioning is especially important for navigation applications such as the landing of commercial aircraft. This subject gives rise to many interesting and challenging mathematical problems. This dissertation investigates two such problems. The first problem involves the study of the relationship between positioning accuracy and satellite geometry configurations relative to a user\u27s position. In this work, accuracy is measured by so-called dilution of precision (DOP) terms. The DOP terms arise from the linear regression model used to estimate user position from GPS observables, and are directly related to user position errors. An analysis of the statistical properties explaining the behavior of the DOP terms is presented. The most accurate satellite geometries and worst configurations are given for some cases. The second problem involves finding methods for detecting and repairing cycle-slips in range delay data between a satellite and a receiver. The distance between a satellite and a receiver can be estimated by measuring the difference in the carrier frequency phase shift experienced between the satellite and receiver oscillators. Cycle-slips are discontinuities in the integer number of complete cycles in these data, and are caused by interruptions or degradations in the signal such as low signal to noise ratio, software failures, or physical obstruction of the signals. These slips propagate to errors in user positioning. Cycle-slip detection and repair are crucial to maintaining accurate positioning. Linear regression models and sequential hypothesis testing are used to model, detect, and repair cycle-slips. The effectiveness of these methods is studied using data obtained from ground-station receivers

    Global positioning system (GPS) positioning errors modeling using Global Ionospheric Scintillation Model (GISM)

    Get PDF
    As technology advancement progresses throughout the years in this modern age, every technology has its part to play in that the world is moving towards a brighter future. GPS (Global Positioning System) has diverse application in current globalized world, its application has pervasive benefits not only to navigation and positioning, it is pivotal in industries like logistics, shipping, financial services and agriculture. Since the decision to shut down the Selectivity Availability (SA) by former U.S. President, Bill Clinton, ionospheric effect is now the primary concern of error contributing factors in GPS. Ionospheric scintillation induces rapid fluctuations in the phase and the amplitude of received GNSS signals. These rapid fluctuations or scintillation potentially introduce cycle slips, degrade range measurements, and if severe enough lead to loss of lock in phase and code. Global Ionospheric Scintillation Model (GISM) was used to compute amplitude scintillation parameter for each GPS satellite visible from Melaka, Malaysia (Latitude 2° 14' N, Longitude 102° 16' E) as its location has strong equatorial scintillation behavior. The output data from GISM was then used to calculate the positioning error. There are two schemes that were used. First, the positioning error was calculated for all the visible satellites. Secondly, the positioning error was calculated for those satellite that have amplitude scintillation index, S4 <;0.7. Comparison of results from the both schemes was then made

    Shadow Matching: A New GNSS Positioning Technique for Urban Canyons

    Get PDF
    The Global Positioning System (GPS) is unreliable in dense urban areas, known as urban canyons, which have tall buildings or narrow streets. This is because the buildings block the signals from many of the satellites. Combining UPS with other Global Navigation Satellite Systems (GNSS) significantly increases the availability of direct line-of-sight signals. Modelling is used to demonstrate that, although this will enable accurate positioning along the direction of the street, the positioning accuracy in the cross-street direction will be poor because the unobstructed satellite signals travel along the street, rather than across it. A novel solution to this problem is to use 3D building models to improve cross-track positioning accuracy in urban canyons by predicting which satellites are visible from different locations and comparing this with the measured satellite visibility to determine position. Modelling is used to show that this shadow matching technique has the potential to achieve metre-order cross-street positioning in urban canyons. The issues to be addressed in developing a robust and practical shadow matching positioning system are then discussed and solutions proposed

    Development of a measurement platformon a light airplane and analysis of airborne measurementsin the atmospheric boundary layer

    Get PDF
    In the present paper we provide an overview of a long term research project aimed at setting up a suitable platform for measurements in the atmospheric boundary layer on a light airplane along with some preliminary results obtained from fi eld campaigns at selected sites. Measurements of air pressure, temperature and relative humidity have been performed in various Alpine valleys up to a height of about 2500 m a.m.s.l. By means of GPS resources and specifi c post-processing procedures careful positioning of measurement points within the explored domain has been achieved. The analysis of collected data allowed detailed investigation of atmospheric vertical structures and dynamics typical of valley environment, such as morning transition from ground based inversion to fully developed well mixed convective boundary layer. Based on data collected along fl ights, 3D fi elds of the explored variables have been detected and identifi ed through application of geostatistical techniques (Kriging). The adopted procedures allowed evaluation of the intrinsic statistical structure of the spatial distribution of measured quantities and the estimate of the values of the same variable at unexplored locations by suitable weighted average of data recorded at close locations. Results thus obtained are presented and discussed

    Measurement signal quality assessment on all available and new signals of multi-GNSS (GPS, GLONASS, Galileo, BDS, and QZSS) with real data

    Get PDF
    Global Navigation Satellite Systems (GNSS) Carrier Phase (CP)-based high-precision positioning techniques have been widely used in geodesy, attitude determination, engineering survey and agricultural applications. With the modernisation of GNSS, multi-constellation and multi-frequency data processing is one of the foci of current GNSS research. The GNSS development authorities have better designs for the new signals, which are aimed for fast acquisition for civil users, less susceptible to interference and multipath, and having lower measurement noise. However, how good are the new signals in practice? The aim of this paper is to provide an early assessment of the newly available signals as well as assessment of the other currently available signals. The signal quality of the multi-GNSS (GPS, GLONASS, Galileo, BDS and QZSS) is assessed by looking at their zero-baseline Double Difference (DD) CP residuals. The impacts of multi-GNSS multi-frequency signals on single-epoch positioning are investigated in terms of accuracy, precision and fixed solution availability with known short baselines

    Development of a measurement platformon a light airplane and analysis of airborne measurementsin the atmospheric boundary layer

    Get PDF
    In the present paper we provide an overview of a long term research project aimed at setting up a suitable platform for measurements in the atmospheric boundary layer on a light airplane along with some preliminary results obtained from fi eld campaigns at selected sites. Measurements of air pressure, temperature and relative humidity have been performed in various Alpine valleys up to a height of about 2500 m a.m.s.l. By means of GPS resources and specifi c post-processing procedures careful positioning of measurement points within the explored domain has been achieved. The analysis of collected data allowed detailed investigation of atmospheric vertical structures and dynamics typical of valley environment, such as morning transition from ground based inversion to fully developed well mixed convective boundary layer. Based on data collected along fl ights, 3D fi elds of the explored variables have been detected and identifi ed through application of geostatistical techniques (Kriging). The adopted procedures allowed evaluation of the intrinsic statistical structure of the spatial distribution of measured quantities and the estimate of the values of the same variable at unexplored locations by suitable weighted average of data recorded at close locations. Results thus obtained are presented and discussed

    Navigation Recommender:Real-Time iGNSS QoS Prediction for Navigation Services

    Get PDF
    Global Navigation Satellite Systems (GNSSs), especially Global Positioning System (GPS), have become commonplace in mobile devices and are the most preferred geo-positioning sensors for many location-based applications. Besides GPS, other GNSSs under development or deployment are GLONASS, Galileo, and Compass. These four GNSSs are planned to be integrated in the near future. It is anticipated that integrated GNSSs (iGNSSs) will improve the overall satellite-based geo-positioning performance. However, one major shortcoming of any GNSS and iGNSSs is Quality of Service (QoS) degradation due to signal blockage and attenuation by the surrounding environments, particularly in obstructed areas. GNSS QoS uncertainty is the root cause of positioning ambiguity, poor localization performance, application freeze, and incorrect guidance in navigation applications. In this research, a methodology, called iGNSS QoS prediction, that can provide GNSS QoS on desired and prospective routes is developed. Six iGNSS QoS parameters suitable for navigation are defined: visibility, availability, accuracy, continuity, reliability, and flexibility. The iGNSS QoS prediction methodology, which includes a set of algorithms, encompasses four modules: segment sampling, point-based iGNSS QoS prediction, tracking-based iGNSS QoS prediction, and iGNSS QoS segmentation. Given that iGNSS QoS prediction is data- and compute-intensive and navigation applications require real-time solutions, an efficient satellite selection algorithm is developed and distributed computing platforms, mainly grids and clouds, for achieving real-time performance are explored. The proposed methodology is unique in several respects: it specifically addresses the iGNSS positioning requirements of navigation systems/services; it provides a new means for route choices and routing in navigation systems/services; it is suitable for different modes of travel such as driving and walking; it takes high-resolution 3D data into account for GNSS positioning; and it is based on efficient algorithms and can utilize high-performance and scalable computing platforms such as grids and clouds to provide real-time solutions. A number of experiments were conducted to evaluate the developed methodology and the algorithms using real field test data (GPS coordinates). The experimental results show that the methodology can predict iGNSS QoS in various areas, especially in problematic areas

    Assessing the quality of ionospheric models through GNSS positioning error: methodology and results

    Get PDF
    Single-frequency users of the global navigation satellite system (GNSS) must correct for the ionospheric delay. These corrections are available from global ionospheric models (GIMs). Therefore, the accuracy of the GIM is important because the unmodeled or incorrectly part of ionospheric delay contributes to the positioning error of GNSS-based positioning. However, the positioning error of receivers located at known coordinates can be used to infer the accuracy of GIMs in a simple manner. This is why assessment of GIMs by means of the position domain is often used as an alternative to assessments in the ionospheric delay domain. The latter method requires accurate reference ionospheric values obtained from a network solution and complex geodetic modeling. However, evaluations using the positioning error method present several difficulties, as evidenced in recent works, that can lead to inconsistent results compared to the tests using the ionospheric delay domain. We analyze the reasons why such inconsistencies occur, applying both methodologies. We have computed the position of 34 permanent stations for the entire year of 2014 within the last Solar Maximum. The positioning tests have been done using code pseudoranges and carrier-phase leveled (CCL) measurements. We identify the error sources that make it difficult to distinguish the part of the positioning error that is attributable to the ionospheric correction: the measurement noise, pseudorange multipath, evaluation metric, and outliers. Once these error sources are considered, we obtain equivalent results to those found in the ionospheric delay domain assessments. Accurate GIMs can provide single-frequency navigation positioning at the decimeter level using CCL measurements and better positions than those obtained using the dual-frequency ionospheric-free combination of pseudoranges. Finally, some recommendations are provided for further studies of ionospheric models using the position domain method.Peer ReviewedPostprint (published version

    Geometry of GPS dilution of precision : revisited

    Get PDF
    We revisit the geometric interpretation of GPS Dilution of Precision (DOP) factors giving emphasis on the geometric impact of the receiver clock parameter on conventional GPS positioning solution. The comparison is made between the solutions with and without an estimated receiver clock parameter, i.e., conventional GPS vs pure trilateration solution. The generalized form of the DOP factors is also presented for observation redundancy greater than zero. The DOP factor equations are established as functions of triangle surfaces and tetrahedron volumes formed by the receiver-satellite unit vectors or by these vectors between themselves. To facilitate the comparison of the solutions with and without a receiver clock parameter, the average of receiver-satellite unit vectors is introduced to interpret the DOP factors geometrically. The geometry of satellite outage is also revisited from a geometric point of view. Finally, the geometric interpretation of receiver clock constrains within a positioning solution is also investigated

    Continuous Manipulation and Characterization of Colloidal Beads and Liposomes via Diffusiophoresis in Single- and Double-Junction Microchannels

    Get PDF
    We reveal a physical mechanism that enables the preconcentration, sorting, and characterization of charged polystyrene nanobeads and liposomes dispersed in a continuous flow within a straight micron-sized channel. Initially, a single Ψ-junction microfluidic chip is used to generate a steady-state salt concentration gradient in the direction perpendicular to the flow. As a result, fluorescent nanobeads dispersed in the electrolyte solutions accumulate into symmetric regions of the channel, appearing as two distinct symmetric stripes when the channel is observed from the top via epi-fluorescence microscopy. Depending on the electrolyte flow configuration and, thus, the direction of the salt concentration gradient field, the fluorescent stripes get closer to or apart from each other as the distance from the inlet increases. Our numerical and experimental analysis shows that although nanoparticle diffusiophoresis and hydrodynamic effects are involved in the accumulation process, diffusio-osmosis along the top and bottom channel walls plays a crucial role in the observed particles dynamics. In addition, we developed a proof-of-concept double Ψ-junction microfluidic device that exploits this accumulation mechanism for the size-based separation and size detection of nanobeads as well as for the measurement of zeta potential and charged lipid composition of liposomes under continuous flow settings. This device is also used to investigate the effect of fluid-like or gel-like states of the lipid membranes on the liposome diffusiophoretic response. The proposed strategy for solute-driven manipulation and characterization of colloids has great potential for microfluidic bioanalytical testing applications, including bioparticle preconcentration, sorting, sensing, and analysis
    • …
    corecore