74 research outputs found

    Investigating the Impact of Demographic Factors on Contactless Fingerprint Interoperability

    Get PDF
    Improvements in contactless fingerprinting have resulted in contactless fingerprints becoming a faster and more convenient alternative to contact fingerprints. The interoperability between contactless fingerprints and contact fingerprints and how demographic factors can change interoperability has been challenging since COVID-19; the need for hygienic alternatives has only grown because of the sudden focus during the pandemic. Past work has shown issues with the interoperability of contactless prints from kiosk devices and phone fingerprint collection apps. Demographic bias in photography for facial recognition could affect photographed fingerprints. The paper focuses on evaluating match performance between contact and contactless fingerprints and evaluating match score bias based on five skin demographics; melanin, erythema, and the three measurements of the CIELab color space. The interoperability of three fingerprint matchers was tested. The best and worst Area Under the Curve (AUC) and Equal Error Rate (EER) values for the best-performing matcher were an AUC of 0.99398 and 0.97873 and an EER of 0.03016 and 0.07555, respectively, while the best contactless AUC and EER were 0.99337 and 0.03387 indicating that contactless match performance can be as good as contact fingerprints depending on the device. In contrast, the best and worst AUC and EER for the cellphone contactless fingerprints were an AUC of 0.96812 and 0.85772 and an EER of 0.08699 and 0.22130, falling short of the lowest performing contact fingerprints. Demographic analysis was on the top two of the three matchers based on the top one percent of non-match scores. Resulting efforts found matcher-specific bias for melanin showing specific ranges affected by low and high melanin values. While higher levels of erythema and general redness of the skin improved performance. Higher lightness values showed a decreased performance in the top-performing matcher

    INFORMATION SECURITY: A STUDY ON BIOMETRIC SECURITY SOLUTIONS FOR TELECARE MEDICAL INFORMATION SYSTEMS

    Get PDF
    This exploratory study provides a means for evaluating and rating Telecare medical information systems in order to provide a more effective security solution. This analysis of existing solutions was conducted via an in-depth study of Telecare security. This is a proposition for current biometric technologies as a new means for secure communication of private information over public channels. Specifically, this research was done in order to provide a means for businesses to evaluate prospective technologies from a 3 dimensional view in order to make am accurate decision on any given biometric security technology. Through identifying key aspects of what makes a security solution the most effective in minimizing risk of a patient’s confidential data being exposed we were then able to create a 3 dimensional rubric to see not only from a business view but also the users such as the patients and doctors that use Telecare medical information systems every day. Finally, we also need to understand the implications of biometric solutions from a technological standpoint

    Gesture recognition implemented on a personal limited device

    Get PDF

    Toward unconstrained fingerprint recognition : a fully touchless 3-D system based on two views on the move

    Get PDF
    Touchless fingerprint recognition systems do not require contact of the finger with any acquisition surface and thus provide an increased level of hygiene, usability, and user acceptability of fingerprint-based biometric technologies. The most accurate touchless approaches compute 3-D models of the fingertip. However, a relevant drawback of these systems is that they usually require constrained and highly cooperative acquisition methods. We present a novel, fully touchless fingerprint recognition system based on the computation of 3-D models. It adopts an innovative and less-constrained acquisition setup compared with other previously reported 3-D systems, does not require contact with any surface or a finger placement guide, and simultaneously captures multiple images while the finger is moving. To compensate for possible differences in finger placement, we propose novel algorithms for computing 3-D models of the shape of a finger. Moreover, we present a new matching strategy based on the computation of multiple touch-compatible images. We evaluated different aspects of the biometric system: acceptability, usability, recognition performance, robustness to environmental conditions and finger misplacements, and compatibility and interoperability with touch-based technologies. The proposed system proved to be more acceptable and usable than touch-based techniques. Moreover, the system displayed satisfactory accuracy, achieving an equal error rate of 0.06% on a dataset of 2368 samples acquired in a single session and 0.22% on a dataset of 2368 samples acquired over the course of one year. The system was also robust to environmental conditions and to a wide range of finger rotations. The compatibility and interoperability with touch-based technologies was greater or comparable to those reported in public tests using commercial touchless devices

    CONTACTLESS FINGERPRINT BIOMETRICS: ACQUISITION, PROCESSING, AND PRIVACY PROTECTION

    Get PDF
    Biometrics is defined by the International Organization for Standardization (ISO) as \u201cthe automated recognition of individuals based on their behavioral and biological characteristics\u201d Examples of distinctive features evaluated by biometrics, called biometric traits, are behavioral characteristics like the signature, gait, voice, and keystroke, and biological characteristics like the fingerprint, face, iris, retina, hand geometry, palmprint, ear, and DNA. The biometric recognition is the process that permits to establish the identity of a person, and can be performed in two modalities: verification, and identification. The verification modality evaluates if the identity declared by an individual corresponds to the acquired biometric data. Differently, in the identification modality, the recognition application has to determine a person's identity by comparing the acquired biometric data with the information related to a set of individuals. Compared with traditional techniques used to establish the identity of a person, biometrics offers a greater confidence level that the authenticated individual is not impersonated by someone else. Traditional techniques, in fact, are based on surrogate representations of the identity, like tokens, smart cards, and passwords, which can easily be stolen or copied with respect to biometric traits. This characteristic permitted a wide diffusion of biometrics in different scenarios, like physical access control, government applications, forensic applications, logical access control to data, networks, and services. Most of the biometric applications, also called biometric systems, require performing the acquisition process in a highly controlled and cooperative manner. In order to obtain good quality biometric samples, the acquisition procedures of these systems need that the users perform deliberate actions, assume determinate poses, and stay still for a time period. Limitations regarding the applicative scenarios can also be present, for example the necessity of specific light and environmental conditions. Examples of biometric technologies that traditionally require constrained acquisitions are based on the face, iris, fingerprint, and hand characteristics. Traditional face recognition systems need that the users take a neutral pose, and stay still for a time period. Moreover, the acquisitions are based on a frontal camera and performed in controlled light conditions. Iris acquisitions are usually performed at a distance of less than 30 cm from the camera, and require that the user assume a defined pose and stay still watching the camera. Moreover they use near infrared illumination techniques, which can be perceived as dangerous for the health. Fingerprint recognition systems and systems based on the hand characteristics require that the users touch the sensor surface applying a proper and uniform pressure. The contact with the sensor is often perceived as unhygienic and/or associated to a police procedure. This kind of constrained acquisition techniques can drastically reduce the usability and social acceptance of biometric technologies, therefore decreasing the number of possible applicative contexts in which biometric systems could be used. In traditional fingerprint recognition systems, the usability and user acceptance are not the only negative aspects of the used acquisition procedures since the contact of the finger with the sensor platen introduces a security lack due to the release of a latent fingerprint on the touched surface, the presence of dirt on the surface of the finger can reduce the accuracy of the recognition process, and different pressures applied to the sensor platen can introduce non-linear distortions and low-contrast regions in the captured samples. Other crucial aspects that influence the social acceptance of biometric systems are associated to the privacy and the risks related to misuses of biometric information acquired, stored and transmitted by the systems. One of the most important perceived risks is related to the fact that the persons consider the acquisition of biometric traits as an exact permanent filing of their activities and behaviors, and the idea that the biometric systems can guarantee recognition accuracy equal to 100\% is very common. Other perceived risks consist in the use of the collected biometric data for malicious purposes, for tracing all the activities of the individuals, or for operating proscription lists. In order to increase the usability and the social acceptance of biometric systems, researchers are studying less-constrained biometric recognition techniques based on different biometric traits, for example, face recognition systems in surveillance applications, iris recognition techniques based on images captured at a great distance and on the move, and contactless technologies based on the fingerprint and hand characteristics. Other recent studies aim to reduce the real and perceived privacy risks, and consequently increase the social acceptance of biometric technologies. In this context, many studies regard methods that perform the identity comparison in the encrypted domain in order to prevent possible thefts and misuses of biometric data. The objective of this thesis is to research approaches able to increase the usability and social acceptance of biometric systems by performing less-constrained and highly accurate biometric recognitions in a privacy compliant manner. In particular, approaches designed for high security contexts are studied in order improve the existing technologies adopted in border controls, investigative, and governmental applications. Approaches based on low cost hardware configurations are also researched with the aim of increasing the number of possible applicative scenarios of biometric systems. The privacy compliancy is considered as a crucial aspect in all the studied applications. Fingerprint is specifically considered in this thesis, since this biometric trait is characterized by high distinctivity and durability, is the most diffused trait in the literature, and is adopted in a wide range of applicative contexts. The studied contactless biometric systems are based on one or more CCD cameras, can use two-dimensional or three-dimensional samples, and include privacy protection methods. The main goal of these systems is to perform accurate and privacy compliant recognitions in less-constrained applicative contexts with respect to traditional fingerprint biometric systems. Other important goals are the use of a wider fingerprint area with respect to traditional techniques, compatibility with the existing databases, usability, social acceptance, and scalability. The main contribution of this thesis consists in the realization of novel biometric systems based on contactless fingerprint acquisitions. In particular, different techniques for every step of the recognition process based on two-dimensional and three-dimensional samples have been researched. Novel techniques for the privacy protection of fingerprint data have also been designed. The studied approaches are multidisciplinary since their design and realization involved optical acquisition systems, multiple view geometry, image processing, pattern recognition, computational intelligence, statistics, and cryptography. The implemented biometric systems and algorithms have been applied to different biometric datasets describing a heterogeneous set of applicative scenarios. Results proved the feasibility of the studied approaches. In particular, the realized contactless biometric systems have been compared with traditional fingerprint recognition systems, obtaining positive results in terms of accuracy, usability, user acceptability, scalability, and security. Moreover, the developed techniques for the privacy protection of fingerprint biometric systems showed satisfactory performances in terms of security, accuracy, speed, and memory usage

    Biometrics & [and] Security:Combining Fingerprints, Smart Cards and Cryptography

    Get PDF
    Since the beginning of this brand new century, and especially since the 2001 Sept 11 events in the U.S, several biometric technologies are considered mature enough to be a new tool for security. Generally associated to a personal device for privacy protection, biometric references are stored in secured electronic devices such as smart cards, and systems are using cryptographic tools to communicate with the smart card and securely exchange biometric data. After a general introduction about biometrics, smart cards and cryptography, a second part will introduce our work with fake finger attacks on fingerprint sensors and tests done with different materials. The third part will present our approach for a lightweight fingerprint recognition algorithm for smart cards. The fourth part will detail security protocols used in different applications such as Personal Identity Verification cards. We will discuss our implementation such as the one we developed for the NIST to be used in PIV smart cards. Finally, a fifth part will address Cryptography-Biometrics interaction. We will highlight the antagonism between Cryptography – determinism, stable data – and Biometrics – statistical, error-prone –. Then we will present our application of challenge-response protocol to biometric data for easing the fingerprint recognition process

    Recent Application in Biometrics

    Get PDF
    In the recent years, a number of recognition and authentication systems based on biometric measurements have been proposed. Algorithms and sensors have been developed to acquire and process many different biometric traits. Moreover, the biometric technology is being used in novel ways, with potential commercial and practical implications to our daily activities. The key objective of the book is to provide a collection of comprehensive references on some recent theoretical development as well as novel applications in biometrics. The topics covered in this book reflect well both aspects of development. They include biometric sample quality, privacy preserving and cancellable biometrics, contactless biometrics, novel and unconventional biometrics, and the technical challenges in implementing the technology in portable devices. The book consists of 15 chapters. It is divided into four sections, namely, biometric applications on mobile platforms, cancelable biometrics, biometric encryption, and other applications. The book was reviewed by editors Dr. Jucheng Yang and Dr. Norman Poh. We deeply appreciate the efforts of our guest editors: Dr. Girija Chetty, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park and Dr. Sook Yoon, as well as a number of anonymous reviewers
    • …
    corecore