12,645 research outputs found

    Incremental simulation modelling for Internet collaborative design

    Get PDF
    In order to support Web-based collaborative design in terms of transferring or updating models dynamically and efficiently, new incremental modelling and local updating strategies have been developed for simulation modelling application since simulation is more focused on visualisation effects than on geometry details. Based on an assembly connection concept, a drag-and-drop assembly method has also been proposed in simulation assembly. An assembly connection is defined as a group of assembly constraints and it makes assembly easier. A case study example is given to show the content of the proposed research

    Development of a novel 3D simulation modelling system for distributed manufacturing

    Get PDF
    This paper describes a novel 3D simulation modelling system for supporting our distributed machine design and control paradigm with respect to simulating and emulating machine behaviour on the Internet. The system has been designed and implemented using Java2D and Java3D. An easy assembly concept of drag-and-drop assembly has been realised and implemented by the introduction of new connection features (unified interface assembly features) between two assembly components (modules). The system comprises a hierarchical geometric modeller, a behavioural editor, and two assemblers. During modelling, designers can combine basic modelling primitives with general extrusions and integrate CAD geometric models into simulation models. Each simulation component (module) model can be visualised and animated in VRML browsers. It is reusable. This makes machine design re-configurable and flexible. A case study example is given to support our conclusions

    Utilizing a 3D game engine to develop a virtual design review system

    Get PDF
    A design review process is where information is exchanged between the designers and design reviewers to resolve any potential design related issues, and to ensure that the interests and goals of the owner are met. The effective execution of design review will minimize potential errors or conflicts, reduce the time for review, shorten the project life-cycle, allow for earlier occupancy, and ultimately translate into significant total project savings to the owner. However, the current methods of design review are still heavily relying on 2D paper-based format, sequential and lack central and integrated information base for efficient exchange and flow of information. There is thus a need for the use of a new medium that allow for 3D visualization of designs, collaboration among designers and design reviewers, and early and easy access to design review information. This paper documents the innovative utilization of a 3D game engine, the Torque Game Engine as the underlying tool and enabling technology for a design review system, the Virtual Design Review System for architectural designs. Two major elements are incorporated; 1) a 3D game engine as the driving tool for the development and implementation of design review processes, and 2) a virtual environment as the medium for design review, where visualization of design and design review information is based on sound principles of GUI design. The development of the VDRS involves two major phases; firstly, the creation of the assets and the assembly of the virtual environment, and secondly, the modification of existing functions or introducing new functionality through programming of the 3D game engine in order to support design review in a virtual environment. The features that are included in the VDRS are support for database, real-time collaboration across network, viewing and navigation modes, 3D object manipulation, parametric input, GUI, and organization for 3D objects

    Digital Availability of Product Information for Collaborative Engineering of Spacecraft

    Get PDF
    In this paper, we introduce a system to collect product information from manufacturers and make it available in tools that are used for concurrent design of spacecraft. The planning of a spacecraft needs experts from different disciplines, like propulsion, power, and thermal. Since these different disciplines rely on each other there is a high need for communication between them, which is often realized by a Model-Based Systems Engineering (MBSE) process and corresponding tools. We show by comparison that the product information provided by manufacturers often does not match the information needed by MBSE tools on a syntactic or semantic level. The information from manufacturers is also currently not available in machine-readable formats. Afterwards, we present a prototype of a system that makes product information from manufacturers directly available in MBSE tools, in a machine-readable way.Comment: accepted at CDVE201

    Supporting decision-making in the building life-cycle using linked building data

    Get PDF
    The interoperability challenge is a long-standing challenge in the domain of architecture, engineering and construction (AEC). Diverse approaches have already been presented for addressing this challenge. This article will look into the possibility of addressing the interoperability challenge in the building life-cycle with a linked data approach. An outline is given of how linked data technologies tend to be deployed, thereby working towards a “more holistic” perspective on the building, or towards a large-scale web of “linked building data”. From this overview, and the associated use case scenarios, we conclude that the interoperability challenge cannot be “solved” using linked data technologies, but that it can be addressed. In other words, information exchange and management can be improved, but a pragmatic usage of technologies is still required in practice. Finally, we give an initial outline of some anticipated use cases in the building life-cycle in which the usage of linked data technologies may generate advantages over existing technologies and methods

    A framework of web-based conceptual design

    Get PDF
    A web-based conceptual design prototype system is presented. The system consists of four parts which interpret on-line sketches as 2D and 3D geometry, extract 3D hierarchical configurations, allow editing of component behaviours, and produce VRML-based behavioural simulations for design verification and web-based application. In the first part, on-line freehand sketched input is interpreted as 2D and 3D geometry, which geometrically represents conceptual design. The system then infers 3D configuration by analysing 3D modelling history. The configuration is described by a parent–child hierarchical relationship and relative positions between two geometric components. The positioning information is computed with respect to the VRML97 specification. In order to verify the conceptual design of a product, the behaviours can be specified interactively on different components. Finally, the system creates VRML97 formatted files for behavioural simulation and collaborative design application over the Internet. The paper gives examples of web-based applications. This work forms a part of a research project into the design and establishing of modular machines for automation manufacture. A consortium of leading automotive companies is collaborating on the research project
    corecore