6,763 research outputs found

    Global virtual teams and 3D collaborative virtual environments

    Get PDF
    Collaborative virtual environments for desktop PCs. are inherently interesting to use and to develop, and provide motivating and challenging capstone projects for capable students to undertake. From an educational perspective, collaboration in virtual three-dimensional spaces using avatars also adds some interesting dimensions to student learning. This paper reports upon a series of developments, in which collaborative virtual environments have been applied since 2001 to support research into global virtual teams. Specific insights relevant to educators and developers have been gained through a series of local and international collaborative trials, using these 3D environments

    Collaborative virtual 3D environment for internet-accessible physics experiments

    Get PDF
    Immersive 3D worlds have increasingly raised the interest of researchers and practitioners for various learning and training settings over the last decade. These virtual worlds can provide multiple communication channels betweeen users and improve presence and awareness in the learning process. Consequently virtual 3D environments facilitate collaborative learning and training scenarios. In this paper we focus on the integration of internet-accessible physics experiments (iLabs) combined with the TEALsim 3D simulation toolkit in project Wonderland, Sun's toolkit for creating collaborative 3D virtual worlds. Within such a collaborative environment these tools provide the opportunity for teachers and students to work together as avatars as they control actual equipment, visualize physical phenomenon generated by the experiment, and discuss the results. In particular we will outline the steps of integration, future goals, as well as the value of a collaboration space in Wonderland's virtual world

    Collaborative virtual 3D environment for internet-accessible physics experiments

    Get PDF
    Immersive 3D worlds have increasingly raised the interest of researchers and practitioners for various learning and training settings over the last decade. These virtual worlds can provide multiple communication channels between users and improve presence and awareness in the learning process. Consequently virtual 3D environments facilitate collaborative learning and training scenarios. In this paper we focus on the integration of internet accessible physics experiments (iLabs) combined with the TEALsim 3D simulation toolkit in Project Wonderland, Sun's toolkit for creating collaborative 3D virtual worlds. Within such a collaborative environment these tools provide the opportunity for teachers and students to work together as avatars as they control actual equipment, visualize physical phenomenon generated by the experiment, and discuss the results. In particular we will outline the steps of integration, future goals, as well as the value of a collaboration space in Wonderland's virtual world

    A Framework to Generate 3D Learning Experience

    Get PDF
    A Collaborative Virtual Environment (CVE) is a computer-based virtual space that supports collaborative work and social interplay. In a 3D CVE, a ‘hosting’ 3D world is the necessary ingredient: within it users provided with graphical embodiments called avatars that convey their identity (presence, location, movement etc.), can meet and interact with other users, with agents or with virtual objects. Even if graphics hardware and 3D technologies are rapidly evolving and the increased Internet connection speed allows the sharing of amounts of data and information among geographically distributed users, the development of networked three-dimensional applications is still complicated and requires expert knowledge. Although some collaborative 3D Web technologies and applications have already been developed, most of them are particularly concerned with offering a high level realistic representation of the virtual world since increasing the level of detail increases the sense of ‘virtual presence’ in the 3D world. However, these developments have not, at the same time supported a high level, non-expert authoring process and the concepts of programming flexibility and component re-use have rarely been taken into account. In this introduction, we discuss our research experience in the field of Collaborative Virtual Environments. We will outline our approach which has been based on both multi-channel integration and on high performances issues

    Laying the groundwork for socialisation and knowledge construction within 3D virtual worlds

    Get PDF
    The paper reports the theoretical underpinnings for the pedagogical role and rationale for adopting 3D virtual worlds for socialisation and knowledge creation in distance education. Socialisation or 'knowing one another' in remote distributed environments can be achieved through synchronous technologies such as instant messaging, audio and video-conferencing. However, a 3D virtual world can provide an immersive experience where there is a visual presence and virtual proximity of the group members in terms of their 3D selves (avatars). We discuss the affordances of a 3D virtual world and its role in providing a platform for pedagogical design that engenders socialisation, synchronous communication and collaboration. We propose the use of a knowledge construction model as a framework for guiding the design of collaborative activities in a 3D virtual world for blended learning environments. We believe that this framework will also be useful for integrating 2D environments such as blogs, wikis and forums with a 3D learning environment. We consider the implications of this in the context of blended learning in distance education. This paper would be of interest to course designers, researchers, teachers, staff developers and policy-makers who are involved in integrating 3D virtual worlds within the curriculum of their programmes and institutions

    Constructing Social Systems through Computer-Mediated Communication

    Get PDF
    The question whether computer-mediated communication can support the formation of genuine social systems is addressed in this paper. Our hypothesis, that technology creates new forms of social systems beyond real-life milieus, includes the idea that the technology itself may influence how social binding emerges within on-line environments. In real-life communities, a precondition for social coherence is the existence of social conventions. By observing interaction in virtual environments, we found the use of a range of social conventions. These results were analyzed to determine how the use and emergence of conventions might be influenced by the technology. One factor contributing to the coherence of on-line social systems, but not the only one, appears to be the degree of social presence mediated by the technology. We suggest that social systems can emerge by computer-mediated communication and are shaped by the media of the specific environment

    From Multi-User Virtual Environment to 3D Virtual Learning Environment

    Get PDF
    While digital virtual worlds have been used in education for a number of years, advances in the capabilities and spread of technology have fed a recent boom in interest in massively multi‐user 3D virtual worlds for entertainment, and this in turn has led to a surge of interest in their educational applications. In this paper we briefly review the use of virtual worlds for education, from informal learning to formal instruction, and consider what is required to turn a virtual world from a Multi‐User Virtual Environment into a fully fledged 3D Virtual Learning Environment (VLE). In this we focus on the development of Sloodle – a system which integrates the popular 3D virtual world of Second Life with the open‐source VLE Moodle. Our intent is not simply to provide additional learning support features for Second Life, but to study more generally the ways in which integrated virtual environments can benefit teaching and learning, and this is the focus of our closing discussion

    Enabling collaboration in virtual reality navigators

    Get PDF
    In this paper we characterize a feature superset for Collaborative Virtual Reality Environments (CVRE), and derive a component framework to transform stand-alone VR navigators into full-fledged multithreaded collaborative environments. The contributions of our approach rely on a cost-effective and extensible technique for loading software components into separate POSIX threads for rendering, user interaction and network communications, and adding a top layer for managing session collaboration. The framework recasts a VR navigator under a distributed peer-to-peer topology for scene and object sharing, using callback hooks for broadcasting remote events and multicamera perspective sharing with avatar interaction. We validate the framework by applying it to our own ALICE VR Navigator. Experimental results show that our approach has good performance in the collaborative inspection of complex models.Postprint (published version

    Visual communication in urban planning and urban design

    Get PDF
    This report documents the current status of visual communication in urban design and planning. Visual communication is examined through discussion of standalone and network media, specifically concentrating on visualisation on the World Wide Web(WWW).Firstly, we examine the use of Solid and Geometric Modelling for visualising urban planning and urban design. This report documents and compares examples of the use of Virtual Reality Modelling Language (VRML) and proprietary WWW based Virtual Reality modelling software. Examples include the modelling of Bath and Glasgow using both VRML 1.0 and 2.0. A review is carried out on the use of Virtual Worldsand their role in visualising urban form within multi-user environments. The use of Virtual Worlds is developed into a case study of the possibilities and limitations of Virtual Internet Design Arenas (ViDAs), an initiative undertaken at the Centre for Advanced Spatial Analysis, University College London. The use of Virtual Worlds and their development towards ViDAs is seen as one of the most important developments in visual communication for urban planning and urban design since the development plan.Secondly, photorealistic media in the process of communicating plans is examined.The process of creating photorealistic media is documented, examples of the Virtual Streetscape and Wired Whitehall Virtual Urban Interface System are provided. The conclusion is drawn that although the use of photo-realistic media on the WWW provides a way to visually communicate planning information, its use is limited. The merging of photorealistic media and solid geometric modelling is reviewed in the creation of Augmented Reality. Augmented Reality is seen to provide an important step forward in the ability to quickly and easily visualise urban planning and urban design information.Thirdly, the role of visual communication of planning data through GIS is examined interms of desktop, three dimensional and Internet based GIS systems. The evolution to Internet GIS is seen as a critical component in the development of virtual cities which will allow urban planners and urban designers to visualise and model the complexity of the built environment in networked virtual reality.Finally a viewpoint is put forward of the Virtual City, linking Internet GIS with photorealistic multi-user Virtual Worlds. At present there are constraints on how far virtual cities can be developed, but a view is provided on how these networked virtual worlds are developing to aid visual communication in urban planning and urban design

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model
    • 

    corecore