1,060 research outputs found

    3-D Metamaterials: Trends on Applied Designs, Computational Methods and Fabrication Techniques

    Get PDF
    This work was funded in part by the Predoctoral Grant FPU18/01965 and in part by the financial support of BBVA Foundation through a project belonging to the 2021 Leonardo Grants for Researchers and Cultural Creators, BBVA Foundation. The BBVA Foundation accepts no responsibility for the opinions, statements, and contents included in the project and/or the results thereof, which are entirely the responsibility of the authors.Metamaterials are artificially engineered devices that go beyond the properties of conventional materials in nature. Metamaterials allow for the creation of negative refractive indexes; light trapping with epsilon-near-zero compounds; bandgap selection; superconductivity phenomena; non-Hermitian responses; and more generally, manipulation of the propagation of electromagnetic and acoustic waves. In the past, low computational resources and the lack of proper manufacturing techniques have limited attention towards 1-D and 2-D metamaterials. However, the true potential of metamaterials is ultimately reached in 3-D configurations, when the degrees of freedom associated with the propagating direction are fully exploited in design. This is expected to lead to a new era in the field of metamaterials, from which future high-speed and low-latency communication networks can benefit. Here, a comprehensive overview of the past, present, and future trends related to 3-D metamaterial devices is presented, focusing on efficient computational methods, innovative designs, and functional manufacturing techniques.Predoctoral Grant FPU18/01965BBVA Foundatio

    Thermal radiation antennas made of multilayer structures containing negative index metamaterials

    Get PDF
    We investigate the thermal antenna behavior of emissive/absorptive substrates coated by passive optical multilayer systems that contain negative refractive index metamaterials (NIM). Spectral and angular distributions of the thermal radiation emittance for periodic defect-containing multilayer with NIM is addressed. We analyze realistic finite structures and took into account dispersion and losses in the NIM part. The application of NIM-containing 1D structures offers new degrees of freedom for the design, thus opening a path to obtain spectrally and spatially selective thermal emitters that could lead to improvements in the existing systems for thermal radiation control

    Dual-band absorber for multispectral plasmon-enhanced infrared photodetection

    Get PDF
    For most of the reported metamaterial absorbers, the peak absorption only occurs at one single wavelength. Here, we investigated a dual-band absorber which is based on simple gold nano-rings. Two absorption peaks can be readily achieved in 3–5 ”m and 8–14 ”m via tuning the width and radius of gold nano-rings and dielectric constant. The average maximum absorption of two bands can be as high as 95.1% (−0.22 dB). Based on the simulation results, the perfect absorber with nano-rings demonstrates great flexibility to create dual-band or triple-band absorption, and thus holds potential for further applications in thermophotovoltaics, multicolor infrared focal plane arrays, optical filters, and biological sensing applications

    Acoustic circular dichroism in a three-dimensional chiral metamaterial

    Full text link
    Circular dichroism (CD) is an intriguing chiroptical phenomenon associated with the interaction of chiral structures with circularly polarized lights. Although the CD effect has been extensively studied in optics, it has not yet been demonstrated in acoustic systems. Here, we demonstrate the acoustic CD effect in a three-dimensional chiral metamaterial supporting circularly polarized transverse sound. We find that the effect is negligible in the lossy metamaterial possessing C4C_4 rotational symmetry but can be strongly enhanced in the C2C_2-symmetric system with inhomogeneous loss. The phenomena can be understood based on the properties of the metamaterial's complex band structure and the quality factors of its eigenmodes. We show that the enhanced CD in the C2C_2-symmetric system is attributed to the polarization bandgaps and the non-Hermitian exceptional points appearing near the Brillouin-zone center and boundaries. The results contribute to the understanding of chiral sound-matter interactions and can find applications in acoustic sensing of chiral structures and sound manipulations based on its vector properties.Comment: 9 pages, 9 figure

    Investigation of Radar Signal Interaction with Crossflow Turbine for Aviation Application

    Get PDF
    The increased adoption of wind energy is an important part of the push towards a net zero-emission economy. One obstacle that stands in the way of a higher rate of wind energy adoption is the interference that wind turbines cause to nearby radar installations. Wind turbines negatively affect the performance of nearby radar sites in a variety of different ways. Almost all types of radar are affected in at least one of these ways.In order to understand the degree to which an object such as a wind turbine interacts with radar, it is important to have detailed radar cross section (RCS) data for the object. In this work, a novel, low-cost, scale model radar cross section characterization system is presented with various advantages over traditional designs. This system was used to characterize the RCS of the novel Crossflow wind turbine. Additionally, work has been carried out on the characterization of metamaterial absorber coatings that can be applied to new and existing turbines for the purposes of reducing their radar cross section and the degree to which they cause radar inter-ference. The works presented can be leveraged to reduce concerns around radar interference from wind turbines, as well as to iteratively generate ge-ometries with lower radar cross sections for the aviation and infrastructure sectors, ultimately accelerating the pace of wind energy adoption and the move towards a net zero-emission economy

    Thermoplasmonic effect of surface enhanced infrared absorption in vertical nanoantenna arrays

    Get PDF
    Thermoplasmonics is a method for increasing temperature remotely using focused visible or infrared laser beams interacting with plasmonic nanoparticles. Here, local heating induced by mid-infrared quantum cascade laser illumination of vertical gold-coated nanoantenna arrays embedded into polymer layers is investigated by infrared nanospectroscopy and electromagnetic/thermal simulations. Nanoscale thermal hotspot images are obtained by a photothermal scanning probe microscopy technique with laser illumination wavelength tuned at the different plasmonic resonances of the arrays. Spectral analysis indicates that both Joule heating by the metal antennas and surface-enhanced infrared absorption (SEIRA) by the polymer molecules located in the apical hotspots of the antennas are responsible for thermoplasmonic resonances, i.e. for strong local temperature increase. At odds with more conventional planar nanoantennas, the vertical antenna structure enables thermal decoupling of the hotspot at the antenna apex from the heat sink constituted by the solid substrate. The temperature increase was evaluated by quantitative comparison of data obtained with the photothermal expansion technique to the results of electromagnetic/ thermal simulations. In the case of strong SEIRA by the C=O bond of poly-methylmethacrylate at 1730 cm-1, for focused mid-infrared laser power of about 20 mW, the evaluated order of magnitude of the nanoscale temperature increase is of 10 K. This result indicates that temperature increases of the order of hundreds of K may be attainable with full mid-infrared laser power tuned at specific molecule vibrational fingerprints

    3D printed hollow-core terahertz fibers

    Get PDF
    CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESPA - FUNDAÇÃO AMAZÔNIA DE AMPARO A ESTUDOS E PESQUISASCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORThis paper reviews the subject of 3D printed hollow-core fibers for the propagation of terahertz (THz) waves. Several hollow and microstructured core fibers have been proposed in the literature as candidates for low-loss terahertz guidance. In this review, we focus on 3D printed hollow-core fibers with designs that cannot be easily created by conventional fiber fabrication techniques. We first review the fibers according to their guiding mechanism: photonic bandgap, antiresonant effect, and Bragg effect. We then present the modeling, fabrication, and characterization of a 3D printed Bragg and two antiresonant fibers, highlighting the advantages of using 3D printers as a path to make the fabrication of complex 3D fiber structures fast and cost-effective.63111CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESPA - FUNDAÇÃO AMAZÔNIA DE AMPARO A ESTUDOS E PESQUISASCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESPA - FUNDAÇÃO AMAZÔNIA DE AMPARO A ESTUDOS E PESQUISASCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORSem informaçãoSem informaçãoSem informaçã

    Characterization of multi-wall carbon nanotubes and their applications

    Get PDF
    PhDCarbon nanotubes (CNT) and their applications is a field which has attract a lot of interest in the past two decades. Since the first invention of CNTs in 1991, and in view of utilising nanoantennas, the focus in many laboratories around the world has shifted to trying to lengthen nanotubes longer from nanometers to few centimeters. Eventually this could lead to CNTs’ use in sub-millimeter, millimiter wave and microwave antenna applications. In this thesis, fundamental properties of carbon nanotube films are investigated, and some applications such as the use of CNTs as absorbers or CNT doped liquid crystals are considered. The concept of frequency tunable patch antennas is also presented. Simulation and measurement results of the liquid crystal based antenna show that frequency tuning is possible, through the use of a liquid crystal cell as a substrate. Additionally, greater tuning can be achieved using liquid crystals with higher dielectric anisotropy at microwave frequencies. This can be achieved by using CNT doped liquid crystals. As mentioned, microwave and terahertz measurements of vertically aligned carbon nanotube arrays placed on the top surface of a rectangular silicon substrate are presented. The S-parameters are calculated allowing the extraction of the complex permittivity, permeability and conductivity of the samples. Theoretical models are being introduced delineating the behaviour of the multi-walled nanotube (MWNT) samples. The material properties of this film provide useful data for potential microwave and terahertz applications such as absorbers. Finally, finite-difference time-domain (FDTD) modelling of CNTs is introduced, verifying the measurements that have been performed, confirming that CNT arrays can be highly absorptive. A novel estimation of the permittivity and permeability of an individual carbon nanotube is presented and a periodic structure is simulated, under periodic boundary conditions, consisting of solid anisotropic cylinders. In addition, the optical properties of vertically aligned carbon nanotube (VACNT) arrays, when the periodicity is both within the sub-wavelength and wavelength iii regime are calculated. The effect of geometrical parameters of the tube such as length, diameter and inter-tube distance between two consecutive tubes are also examined
    • 

    corecore