28 research outputs found

    Dimensionality Reduction for Persistent Homology with Gaussian Kernels

    Get PDF
    Computing persistent homology using Gaussian kernels is useful in the domains of topological data analysis and machine learning as shown by Phillips, Wang and Zheng [SoCG 2015]. However, contrary to the case of computing persistent homology using the Euclidean distance or even the k-distance, it is not known how to compute the persistent homology of high dimensional data using Gaussian kernels. In this paper, we consider a power distance version of the Gaussian kernel distance (GKPD) given by Phillips, Wang and Zheng, and show that the persistent homology of the Čech filtration of P computed using the GKPD is approximately preserved. For datasets in R D , under a relative error bound of ε ∈ (0, 1], we obtain a dimensionality of (i) O(ε −2 log 2 n) for n-point datasets and (ii) O(Dε −2 log(Dr/ε)) for datasets having diameter r (up to a scaling factor). We use two main ingredients. The first one is a new decomposition of the squared radii of Čech simplices using the kernel power distance, in terms of the pairwise GKPDs between the vertices, which we state and prove. The second one is the Random Fourier Features (RFF) map of Rahimi and Recht [NeurIPS 2007], as used by Chen and Phillips [ALT 2017]

    Parameterized complexity of quantum knot invariants

    Get PDF
    We give a general fixed parameter tractable algorithm to compute quantum invariants of links presented by diagrams, whose complexity is singly exponential in the carving-width (or the tree-width) of the diagram. In particular, we get a O(N^{3/2 cw} poly(n)) time algorithm to compute any Reshetikhin-Turaev invariant-derived from a simple Lie algebra g-of a link presented by a planar diagram with n crossings and carving-width cw, and whose components are coloured with g-modules of dimension at most N. For example, this includes the N th-coloured Jones polynomial and the N th-coloured HOMFLYPT polynomial

    Reduction Algorithms for Persistence Diagrams of Networks: CoralTDA and PrunIT

    Full text link
    Topological data analysis (TDA) delivers invaluable and complementary information on the intrinsic properties of data inaccessible to conventional methods. However, high computational costs remain the primary roadblock hindering the successful application of TDA in real-world studies, particularly with machine learning on large complex networks. Indeed, most modern networks such as citation, blockchain, and online social networks often have hundreds of thousands of vertices, making the application of existing TDA methods infeasible. We develop two new, remarkably simple but effective algorithms to compute the exact persistence diagrams of large graphs to address this major TDA limitation. First, we prove that (k+1)(k+1)-core of a graph G\mathcal{G} suffices to compute its kthk^{th} persistence diagram, PDk(G)PD_k(\mathcal{G}). Second, we introduce a pruning algorithm for graphs to compute their persistence diagrams by removing the dominated vertices. Our experiments on large networks show that our novel approach can achieve computational gains up to 95%. The developed framework provides the first bridge between the graph theory and TDA, with applications in machine learning of large complex networks. Our implementation is available at https://github.com/cakcora/PersistentHomologyWithCoralPrunitComment: Spotlight paper at NeurIPS 202

    On Complexity of 1-Center in Various Metrics

    Get PDF
    We consider the classic 1-center problem: Given a set P of n points in a metric space find the point in P that minimizes the maximum distance to the other points of P. We study the complexity of this problem in d-dimensional p\ell_p-metrics and in edit and Ulam metrics over strings of length d. Our results for the 1-center problem may be classified based on d as follows. \bullet Small d: We provide the first linear-time algorithm for 1-center problem in fixed-dimensional 1\ell_1 metrics. On the other hand, assuming the hitting set conjecture (HSC), we show that when d=ω(logn)d=\omega(\log n), no subquadratic algorithm can solve 1-center problem in any of the p\ell_p-metrics, or in edit or Ulam metrics. \bullet Large d. When d=Ω(n)d=\Omega(n), we extend our conditional lower bound to rule out sub quartic algorithms for 1-center problem in edit metric (assuming Quantified SETH). On the other hand, we give a (1+ϵ)(1+\epsilon)-approximation for 1-center in Ulam metric with running time Oϵ~(nd+n2d)\tilde{O_{\epsilon}}(nd+n^2\sqrt{d}). We also strengthen some of the above lower bounds by allowing approximations or by reducing the dimension d, but only against a weaker class of algorithms which list all requisite solutions. Moreover, we extend one of our hardness results to rule out subquartic algorithms for the well-studied 1-median problem in the edit metric, where given a set of n strings each of length n, the goal is to find a string in the set that minimizes the sum of the edit distances to the rest of the strings in the set

    Labeled Nearest Neighbor Search and Metric Spanners via Locality Sensitive Orderings

    Get PDF
    Chan, Har-Peled, and Jones [SICOMP 2020] developed locality-sensitive orderings (LSO) for Euclidean space. A (τ,ρ)(\tau,\rho)-LSO is a collection Σ\Sigma of orderings such that for every x,yRdx,y\in\mathbb{R}^d there is an ordering σΣ\sigma\in\Sigma, where all the points between xx and yy w.r.t. σ\sigma are in the ρ\rho-neighborhood of either xx or yy. In essence, LSO allow one to reduce problems to the 11-dimensional line. Later, Filtser and Le [STOC 2022] developed LSO's for doubling metrics, general metric spaces, and minor free graphs. For Euclidean and doubling spaces, the number of orderings in the LSO is exponential in the dimension, which made them mainly useful for the low dimensional regime. In this paper, we develop new LSO's for Euclidean, p\ell_p, and doubling spaces that allow us to trade larger stretch for a much smaller number of orderings. We then use our new LSO's (as well as the previous ones) to construct path reporting low hop spanners, fault tolerant spanners, reliable spanners, and light spanners for different metric spaces. While many nearest neighbor search (NNS) data structures were constructed for metric spaces with implicit distance representations (where the distance between two metric points can be computed using their names, e.g. Euclidean space), for other spaces almost nothing is known. In this paper we initiate the study of the labeled NNS problem, where one is allowed to artificially assign labels (short names) to metric points. We use LSO's to construct efficient labeled NNS data structures in this model

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum
    corecore