7,797 research outputs found

    LaRC TPI 1500 series polymers

    Get PDF
    The crystallization behavior and the melt flow properties of two batches of 1500 series LaRC-TPI polymers from Mitsui Toatsu Chemicals (MTC) were investigated. The characterization methods include Differential Scanning Calorimetry, the x ray diffractography and the melt rheology. The as-received materials possess initial crystalline melting peak temperatures of 295 and 305 C, respectively. These materials are less readily recrystallizable at elevated temperatures when compared to other semicrystalline thermoplastics. For the samples annealed at temperatures below 330 C, a semicrystalline polymer can be obtained. On the other hand, a purely amorphous structure is realized in the samples annealed at temperatures above 330 C. Isothermal crystallization kinetics were studied by means of the simple Avrami equation. The viscoelastic properties at elevated temperatures below and above glass transition temperature of the polymers were measured. Information with regard to the molecule sizes and distributions in these polymers were also extracted from melt rheology

    High-temperature strength of refractory-metal wires and consideration for composite applications

    Get PDF
    Tensile and stress-rupture tests were conducted on wires of W-Hf-C, W-Re-Hf-C, ASTAR 811C (a tantalum alloy), and B-88 (a columbium alloy) at room temperature, 1093 C (2000 F), and 1204 C (2200 F). Metallographic examinations were also made of the wire microstructure after testing. Ultimate tensile strength values up to 2170 meganewtons per square meter (314000 psi) at 1093 C (2000 F) and 1940 meganewtons per square meter (281 000 psi) at 1204 C (2200 F) were obtained for W-Re-Hf-C wire. The best strength values obtained for a 100-hour rupture life were, 1410 meganewtons per square meter (205 000 psi) at 1093 C (2000 F) and 910 meganewtons per square meter (132 000 psi) at 1240 C (2200 F) for W-Re-Hf-C wire. The properties obtained suggested that the wires studied showed promise as potential fiber reinforcement in the 1093 to 1204 C (2000 to 2200 F) temperature range

    McHenry County Indicators, 2014

    Get PDF
    Social IMPACT Research Center's analysis of the U.S. Census Bureau's 2000 Decennial Census and 2010-2014 American Community Survey 5-year estimates program

    Field induced gap infrared detector

    Get PDF
    A tunable infrared detector which employs a vanishing band gap semimetal material provided with an induced band gap by a magnetic field to allow intrinsic semiconductor type infrared detection capabilities is disclosed. The semimetal material may thus operate as a semiconductor type detector with a wavelength sensitivity corresponding to the induced band gap in a preferred embodiment of a diode structure. Preferred semimetal materials include Hg(1-x)Cd(x)Te, x is less than 0.15, HgCdSe, BiSb, alpha-Sn, HgMgTe, HgMnTe, HgZnTe, HgMnSe, HgMgSe, and HgZnSe. The magnetic field induces a band gap in the semimetal material proportional to the strength of the magnetic field allowing tunable detection cutoff wavelengths. For an applied magnetic field from 5 to 10 tesla, the wavelength detection cutoff will be in the range of 20 to 50 micrometers for Hg(1-x)Cd(x)Te alloys with x about 0.15. A similar approach may also be employed to generate infrared energy in a desired band gap and then operating the structure in a light emitting diode or semiconductor laser type of configuration

    Entanglement between an electron and a nuclear spin 1/2

    Get PDF
    We report on the preparation and detection of entangled states between an electron spin 1/2 and a nuclear spin 1/2 in a molecular single crystal. These were created by applying pulses at ESR (9.5 GHz) and NMR (28 MHz) frequencies. Entanglement was detected by using a special entanglement detector sequence based on a unitary back transformation including phase rotation.Comment: 4 pages, 3 figure
    corecore