13 research outputs found

    Interim research assessment 2003-2005 - Computer Science

    Get PDF
    This report primarily serves as a source of information for the 2007 Interim Research Assessment Committee for Computer Science at the three technical universities in the Netherlands. The report also provides information for others interested in our research activities

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    Improving Resource Efficiency in Cloud Computing

    Get PDF
    Customers inside the cloud computing market are heterogeneous in several aspects, e.g., willingness to pay and performance requirement. By taking advantage of trade-offs created by these heterogeneities, the service provider can realize a more efficient system. This thesis is concerned with methods to improve the utilization of cloud infrastructure resources, and with the role of pricing in realizing those improvements and leveraging heterogeneity. Towards improving utilization, we explore methods to optimize network usage through traffic engineering. Particularly, we introduce a novel optimization framework to decrease the bandwidth required by inter-data center networks through traffic scheduling and shaping, and then propose algorithms to improve network utilization based on the analytical results derived from the optimization. When considering pricing, we focus on elucidating conditions under which providing a mix of services can increase a service provider\u27s revenue. Specifically, we characterize the conditions under which providing a ``delayed\u27\u27 service can result in a higher revenue for the service provider, and then offer guidelines for both users and providers
    corecore