435 research outputs found

    A regional solar forecasting approach using generative adversarial networks with solar irradiance maps

    Get PDF
    The intermittent and stochastic nature of solar resource hinders the integration of solar energy into modern power system. Solar forecasting has become an important tool for better photovoltaic (PV) power integration, effective market design, and reliable grid operation. Nevertheless, most existing solar forecasting methods are dedicated to improving forecasting accuracy at site-level (e.g. for individual PV power plants) regardless of the impacts caused by the accumulated penetration of distributed PV systems. To tackle with this issue, this article proposes a novel generative approach for regional solar forecasting considering an entire geographical region of a flexible spatial scale. Specifically, we create solar irradiance maps (SIMs) for solar forecasting for the first time by using spatial Kriging interpolation with satellite-derived solar irradiance data. The sequential SIMs provide a comprehensive view of how solar intensity varies over time and are further used as the inputs for a multi-scale generative adversarial network (GAN) to predict the next-step SIMs. The generated SIM frames can be further transformed into PV power output through a irradiance-to-power model. A case study is conducted in a 24 × 24 km area of Brisbane to validate the proposed method by predicting of both solar irradiance and the output of behind-the-meter (BTM) PV systems at unobserved locations. The approach demonstrates comparable accuracy in terms of solar irradiance forecasting and better predictions in PV power generation compared to the conventional forecasting models with a highest average forecasting skill of 10.93±2.35% for all BTM PV systems. Thus, it can be potentially used to assist solar energy assessment and power system control in a highly-penetrated region

    Spatio-temporal solar forecasting

    Get PDF
    Current and future photovoltaic (PV) deployment levels require accurate forecasting to ensure grid stability. Spatio-temporal solar forecasting is a recent solar forecasting approach that explores spatially distributed solar data sets, either irradiance or photovoltaic power output, modeling cloud advection patterns to improve forecasting accuracy. This thesis contributes to further understanding of the potential and limitations of this approach, for different spatial and temporal scales, using different data sources; and its sensitivity to prevailing local weather patterns. Three irradiance data sets with different spatial coverages (from meters to hundreds of kilometers) and time resolutions (from seconds to days) were investigated using linear autoregressive models with external inputs (ARX). Adding neighboring data led to accuracy gains up to 20-40 % for all datasets. Spatial patterns matching the local prevailing winds could be identified in the model coefficients and the achieved forecast skill whenever the forecast horizon was of the order of scale of the distance between sensors divided by cloud speed. For one of the sets, it was shown that the ARX model underperformed for non-prevailing winds. Thus, a regime-based approach driven by wind information is proposed, where specialized models are trained for different ranges of wind speed and wind direction. Although forecast skill improves by up to 55.2 % for individual regimes, the overall improvement is only of 4.3 %, as those winds have a low representation in the data. By converting the highest resolution irradiance data set to PV power, it was also shown that forecast accuracy is sensitive to module tilt and orientation. Results are shown to be correlated with the difference in tilt and orientation between systems, indicating that clear-sky normalization is not totally effective in removing the geometry dependence of solar irradiance. Thus, non-linear approaches, such as machine learning algorithms, should be tested for modelling the non-linearity introduced by the mounting diversity from neighboring systems in spatio-temporal forecasting

    Analyzing big time series data in solar engineering using features and PCA

    Get PDF
    In solar engineering, we encounter big time series data such as the satellite-derived irradiance data and string-level measurements from a utility-scale photovoltaic (PV) system. While storing and hosting big data are certainly possible using today’s data storage technology, it is challenging to effectively and efficiently visualize and analyze the data. We consider a data analytics algorithm to mitigate some of these challenges in this work. The algorithm computes a set of generic and/or application-specific features to characterize the time series, and subsequently uses principal component analysis to project these features onto a two-dimensional space. As each time series can be represented by features, it can be treated as a single data point in the feature space, allowing many operations to become more amenable. Three applications are discussed within the overall framework, namely (1) the PV system type identification, (2) monitoring network design, and (3) anomalous string detection. The proposed framework can be easily translated to many other solar engineer applications

    Solar Irradiance Prediction Using Xg-boost With the Numerical Weather Forecast

    Get PDF
    To defeat global warming, the world expects to look at renewable energy sources. Solar energy is one of the best renewable energy sources which causes no harm to the environment. As solar energy changes with atmospheric parameters like temperature, relative humidity, cloud coverage, dewpoint, sun position, day of the year, etc. It is difficult to understand its nature by science. Predicting solar irradiance which is directly proportional to solar energy using atmospheric parameters is the main goal of this work. Powerful artificial intelligence algorithms that won many coding competitions have been used to predict it. Using these methods and numerical weather forecast datasets one can predict solar irradiance up to ten days with the resolution of three hours. Two-day prediction is more reliable as error after that increases. As solar energy is not available all day there is a need to pre-plan the storage and utilization. From an electric charge station perspective, if he knows the energy generated by solar and the amount of load he needs to supply, he can take a wise decision to supply the maximum load with the available power. This will make him get more profits. This experimental study has been executed by driving solar energy predictions along with load predictions to an algorithm that gives an optimum charge and discharge schedule of the battery considering the profit of the electric vehicle charging station. Profit is calculated with solar predictions in different scenarios with the consideration of the price of the energy at a given time

    Assessment of Renewable Energy Resources with Remote Sensing

    Get PDF
    The development of renewable energy sources plays a fundamental role in the transition towards a low carbon economy. Considering that renewable energy resources have an intrinsic relationship with meteorological conditions and climate patterns, methodologies based on the remote sensing of the atmosphere are fundamental sources of information to support the energy sector in planning and operation procedures. This Special Issue is intended to provide a highly recognized international forum to present recent advances in remote sensing to data acquisition required by the energy sector. After a review, a total of eleven papers were accepted for publication. The contributions focus on solar, wind, and geothermal energy resource. This editorial presents a brief overview of each contribution.About the Editor .............................................. vii Fernando Ramos Martins Editorial for the Special Issue: Assessment of Renewable Energy Resources with Remote Sensing Reprinted from: Remote Sens. 2020, 12, 3748, doi:10.3390/rs12223748 ................. 1 André R. Gonçalves, Arcilan T. Assireu, Fernando R. Martins, Madeleine S. G. Casagrande, Enrique V. Mattos, Rodrigo S. Costa, Robson B. Passos, Silvia V. Pereira, Marcelo P. Pes, Francisco J. L. Lima and Enio B. Pereira Enhancement of Cloudless Skies Frequency over a Large Tropical Reservoir in Brazil Reprinted from: Remote Sens. 2020, 12, 2793, doi:10.3390/rs12172793 ................. 7 Anders V. Lindfors, Axel Hertsberg, Aku Riihelä, Thomas Carlund, Jörg Trentmann and Richard Müller On the Land-Sea Contrast in the Surface Solar Radiation (SSR) in the Baltic Region Reprinted from: Remote Sens. 2020, 12, 3509, doi:10.3390/rs12213509 ................. 33 Joaquín Alonso-Montesinos Real-Time Automatic Cloud Detection Using a Low-Cost Sky Camera Reprinted from: Remote Sens. 2020, 12, 1382, doi:10.3390/rs12091382 ................. 43 Román Mondragón, Joaquín Alonso-Montesinos, David Riveros-Rosas, Mauro Valdés, Héctor Estévez, Adriana E. González-Cabrera and Wolfgang Stremme Attenuation Factor Estimation of Direct Normal Irradiance Combining Sky Camera Images and Mathematical Models in an Inter-Tropical Area Reprinted from: Remote Sens. 2020, 12, 1212, doi:10.3390/rs12071212 ................. 61 Jinwoong Park, Jihoon Moon, Seungmin Jung and Eenjun Hwang Multistep-Ahead Solar Radiation Forecasting Scheme Based on the Light Gradient Boosting Machine: A Case Study of Jeju Island Reprinted from: Remote Sens. 2020, 12, 2271, doi:10.3390/rs12142271 ................. 79 Guojiang Xiong, Jing Zhang, Dongyuan Shi, Lin Zhu, Xufeng Yuan and Gang Yao Modified Search Strategies Assisted Crossover Whale Optimization Algorithm with Selection Operator for Parameter Extraction of Solar Photovoltaic Models Reprinted from: Remote Sens. 2019, 11, 2795, doi:10.3390/rs11232795 ................. 101 Alexandra I. Khalyasmaa, Stanislav A. Eroshenko, Valeriy A. Tashchilin, Hariprakash Ramachandran, Teja Piepur Chakravarthi and Denis N. Butusov Industry Experience of Developing Day-Ahead Photovoltaic Plant Forecasting System Based on Machine Learning Reprinted from: Remote Sens. 2020, 12, 3420, doi:10.3390/rs12203420 ................. 125 Ian R. Young, Ebru Kirezci and Agustinus Ribal The Global Wind Resource Observed by Scatterometer Reprinted from: Remote Sens. 2020, 12, 2920, doi:10.3390/rs12182920 ................. 147 Susumu Shimada, Jay Prakash Goit, Teruo Ohsawa, Tetsuya Kogaki and Satoshi Nakamura Coastal Wind Measurements Using a Single Scanning LiDAR Reprinted from: Remote Sens. 2020, 12, 1347, doi:10.3390/rs12081347 ................. 165 Cristina Sáez Blázquez, Pedro Carrasco García, Ignacio Martín Nieto, MiguelAngel ´ Maté-González, Arturo Farfán Martín and Diego González-Aguilera Characterizing Geological Heterogeneities for Geothermal Purposes through Combined Geophysical Prospecting Methods Reprinted from: Remote Sens. 2020, 12, 1948, doi:10.3390/rs12121948 ................. 189 Miktha Farid Alkadri, Francesco De Luca, Michela Turrin and Sevil Sariyildiz A Computational Workflow for Generating A Voxel-Based Design Approach Based on Subtractive Shading Envelopes and Attribute Information of Point Cloud Data Reprinted from: Remote Sens. 2020, 12, 2561, doi:10.3390/rs12162561 ................. 207Instituto do Ma

    Assessment and forecasting of solar resource: applications to the solar energy industry

    Get PDF
    En la presente tesis doctoral se lleva a cabo un estudio de la evaluación y de la predicción del recurso solar para su aplicación en el campo de la industria solar. El objetivo principal es mejorar el conocimiento sobre varios aspectos de la radiación solar como fuente primaria de energía. Sin embargo, a pesar del incesante desarrollo tecnológico y el considerable abaratamiento de costes, su grado de introducción dentro de los sistemas eléctricos a gran escala está todavía lejos de su potencial real. Esto es debido en gran parte a que, a pesar de que la radiación solar es la fuente primaria de energía más abundante del planeta, presenta de forma natural una gran variabilidad espacio-temporal. Esta característica constituye la mayor fuente de incertidumbre en el desarrollo de los proyectos solares, tanto en la fase inicial de estudio de viabilidad como durante la fase de operación. Con el fin de contribuir a la reducción de dicha incertidumbre, en el trabajo de investigación llevado a cabo en esta tesis doctoral se han desarrollado y evaluado métodos para la caracterización y la estimación de la irradiancia solar en superficie, tanto para la componente global (GHI) como para la directa (DNI).In this thesis a study of the assessment and forecasting of the solar resource for its application in the solar industry is carried out. The main objective is to improve the knowledge about various aspects of solar radiation as primary energy source. . However, despite the relentless technological development and the considerable cost reductions, its degree of introduction at large-scale into power systems is still far from its real potential. This is due mainly to the fact that, although solar radiation is the most abundant primary energy source in the planet, it naturally presents a great spatial and temporal variability. This characteristic constitutes the major source of uncertainty in the development of solar projects, both in the initial phase of feasibility study and during the phase of operation. In order to contribute to the reduction of this uncertainty, the research work carried out in this thesis has developed and evaluated methods for the characterization and estimation of surface solar irradiance, both components: global (GHI) and direct (DNI).Tesis Univ. Jaén. Departamento de Física. Leída el 24 de julio de 2017

    Impact of tropical convective conditions on solar irradiance forecasting based on cloud motion vectors

    Get PDF
    Intra-day forecasts of global horizontal solar irradiance (GHI) are widely produced by displacing existing clouds on a geo-stationary satellite image to their future locations with cloud motion vectors (CMVs) derived from preceding images. The CMV estimation methods assume rigid cloud bodies with advective motion, which performs reasonably well in mid-latitudes but can be strained for tropical and sub-tropical climatic zones during prolonged periods of seasonal convection. We study the impact of the South Asian monsoon time convection on the accuracy of CMV based forecasts by analysing 2 years of forecasts from three commonly used CMV methods—Block-match, Farnebäck (Optical flow) and TV-L1 (Optical flow). Forecasted cloud index (CI) maps of the entire image section are validated against analysis CI maps for the period 2018–2019 for forecast lead times from 0 to 5.5 h. Site-level GHI forecasts are validated against ground measured data from two Baseline Surface Radiation Network stations—Gurgaon (GUR) and Tiruvallur (TIR), located in hot semi-arid and tropical savanna climatic zones respectively. The inter-seasonal variation of forecast accuracy is prominent and a clear link is found between the increase in convection, represented by a decrease in outgoing longwave radiation (OLR), and the decrease in forecast accuracy. The GUR site shows the highest forecast error in the southwest monsoon period and exhibits a steep rise of forecast error with the increase in convection. The highest forecast error occurs in the northeast monsoon period of December in TIR. The impact of convection on the number of erroneous time blocks of predicted photovoltaic production is also studied. Our results provide insights into the contribution of convection to errors in CMV based forecasts and shows that OLR can be used as a feature in future forecasting methods to consider the impact of convection on forecast accuracy
    corecore