51 research outputs found

    Breaking the PPSZ Barrier for Unique 3-SAT

    Full text link
    The PPSZ algorithm by Paturi, Pudl\'ak, Saks, and Zane (FOCS 1998) is the fastest known algorithm for (Promise) Unique k-SAT. We give an improved algorithm with exponentially faster bounds for Unique 3-SAT. For uniquely satisfiable 3-CNF formulas, we do the following case distinction: We call a clause critical if exactly one literal is satisfied by the unique satisfying assignment. If a formula has many critical clauses, we observe that PPSZ by itself is already faster. If there are only few clauses allover, we use an algorithm by Wahlstr\"om (ESA 2005) that is faster than PPSZ in this case. Otherwise we have a formula with few critical and many non-critical clauses. Non-critical clauses have at least two literals satisfied; we show how to exploit this to improve PPSZ.Comment: 13 pages; major revision with simplified algorithm but slightly worse constant

    PPSZ for General k-SAT - Making Hertli\u27s Analysis Simpler and 3-SAT Faster

    Get PDF
    The currently fastest known algorithm for k-SAT is PPSZ named after its inventors Paturi, Pudlak, Saks, and Zane. Analyzing its running time is much easier for input formulas with a unique satisfying assignment. In this paper, we achieve three goals. First, we simplify Hertli\u27s analysis for input formulas with multiple satisfying assignments. Second, we show a "translation result": if you improve PPSZ for k-CNF formulas with a unique satisfying assignment, you will immediately get a (weaker) improvement for general k-CNF formulas. Combining this with a result by Hertli from 2014, in which he gives an algorithm for Unique-3-SAT slightly beating PPSZ, we obtain an algorithm beating PPSZ for general 3-SAT, thus obtaining the so far best known worst-case bounds for 3-SAT

    Faster Algorithm for Unique (k,2)-CSP

    Get PDF

    Super Strong ETH Is True for PPSZ with Small Resolution Width

    Get PDF
    We construct k-CNFs with m variables on which the strong version of PPSZ k-SAT algorithm, which uses resolution of width bounded by O(√{log log m}), has success probability at most 2^{-(1-(1 + ε)2/k)m} for every ε > 0. Previously such a bound was known only for the weak PPSZ algorithm which exhaustively searches through small subformulas of the CNF to see if any of them forces the value of a given variable, and for strong PPSZ the best known previous upper bound was 2^{-(1-O(log(k)/k))m} (Pudlák et al., ICALP 2017)

    Impatient PPSZ - A Faster Algorithm for CSP

    Get PDF
    PPSZ is the fastest known algorithm for (d,k)-CSP problems, for most values of d and k. It goes through the variables in random order and sets each variable randomly to one of the d colors, excluding those colors that can be ruled out by looking at few constraints at a time. We propose and analyze a modification of PPSZ: whenever all but 2 colors can be ruled out for some variable, immediately set that variable randomly to one of the remaining colors. We show that our new "impatient PPSZ" outperforms PPSZ exponentially for all k and all d ? 3 on formulas with a unique satisfying assignment

    Tighter Hard Instances for PPSZ

    Get PDF
    We construct uniquely satisfiable k-CNF formulas that are hard for the PPSZ algorithm, the currently best known algorithm solving k-SAT. This algorithm tries to generate a satisfying assignment by picking a random variable at a time and attempting to derive its value using some inference heuristic and otherwise assigning a random value. The "weak PPSZ" checks all subformulas of a given size to derive a value and the "strong PPSZ" runs resolution with width bounded by some given function. Firstly, we construct graph-instances on which "weak PPSZ" has savings of at most (2 + epsilon)/k; the saving of an algorithm on an input formula with n variables is the largest gamma such that the algorithm succeeds (i.e. finds a satisfying assignment) with probability at least 2^{- (1 - gamma) n}. Since PPSZ (both weak and strong) is known to have savings of at least (pi^2 + o(1))/6k, this is optimal up to the constant factor. In particular, for k=3, our upper bound is 2^{0.333... n}, which is fairly close to the lower bound 2^{0.386... n} of Hertli [SIAM J. Comput.\u2714]. We also construct instances based on linear systems over F_2 for which strong PPSZ has savings of at most O(log(k)/k). This is only a log(k) factor away from the optimal bound. Our constructions improve previous savings upper bound of O((log^2(k))/k) due to Chen et al. [SODA\u2713]

    An approximation algorithm for #k-SAT

    Get PDF
    "Vegeu el resum a l'inici del document del fitxer adjunt"
    • …
    corecore