473 research outputs found

    Empty substrate integrated waveguide technology for E plane high-frequency and high-performance circuits

    Get PDF
    Substrate integrated circuits (SIC) have attracted much attention in the last years because of their great potential of low cost, easy manufacturing, integration in a circuit board, and higher-quality factor than planar circuits. A first suite of SIC where the waves propagate through dielectric have been first developed, based on the well-known substrate integrated waveguide (SIW) and related technological implementations. One step further has been made with a new suite of empty substrate integrated waveguides, where the waves propagate through air, thus reducing the associated losses. This is the case of the empty substrate integrated waveguide (ESIW) or the air-filled substrate integrated waveguide (air-filled SIW). However, all these SIC are H plane structures, so classical H plane solutions in rectangular waveguides have already been mapped to most of these new SIC. In this paper a novel E plane empty substrate integrated waveguide (ESIW-E) is presented. This structure allows to easily map classical E plane solutions in rectangular waveguide to this new substrate integrated solution. It is similar to the ESIW, although more layers are needed to build the structure. A wideband transition (covering the frequency range between 33 GHz and 50 GHz) from microstrip to ESIW-E is designed and manufactured. Measurements are successfully compared with simulation, proving the validity of this new SIC. A broadband high-frequency phase shifter (for operation from 35 GHz to 47 GHz) is successfully implemented in ESIW-E, thus proving the good performance of this new SIC in a practical application.This work was supported by the Ministerio de Economía y Competitividad, Spanish Goverment, under research projects TEC2013-47037-C5-3-R, TEC2013-47037-C5-1-R, AYA2013-49759-EXP, and CSD2010-00064

    An investigation for the development of an integrated optical data preprocessor

    Get PDF
    The successful fabrication and demonstration of an integrated optical circuit designed to perform a parallel processing operation by utilizing holographic subtraction to simultaneously compare N analog signal voltages with N predetermined reference voltages is summarized. The device alleviates transmission, storage and processing loads of satellite data systems by performing, at the sensor site, some preprocessing of data taken by remote sensors. Major accomplishments in the fabrication of integrated optics components include: (1) fabrication of the first LiNbO3 waveguide geodesic lens; (2) development of techniques for polishing TIR mirrors on LiNbO3 waveguides; (3) fabrication of high efficiency metal-over-photoresist gratings for waveguide beam splitters; (4) demonstration of high S/N holographic subtraction using waveguide holograms; and (5) development of alignment techniques for fabrication of integrated optics circuits. Important developments made in integrated optics are the discovery and suggested use of holographic self-subtraction in LiNbO3, development of a mathematical description of the operating modes of the preprocessor, and the development of theories for diffraction efficiency and beam quality of two dimensional beam defined gratings

    Compact and broadband 4×4 SIW Butler matrix with phase and magnitude error reduction

    Get PDF
    A novel two-layer 4 4 Butler matrix by feeding substrate integrated waveguide is designed and realized. The proposed Butler matrix has broadband operation frequency range of over 8.5 to 10.6 GHz with excellent phase and amplitude performance. The proposed design in this letter prevents the loss of amplitude and phase shifts in Butler matrix and decreases amplitude imbalance to less than 0.6 dB. This is achieved by reducing the size of Butler matrix and avoiding the use of a line length which causes a phase shift

    A Recent Approach towards Fluidic Microstrip Devices and Gas Sensors: A Review

    Get PDF
    This paper aims to review some of the available tunable devices with emphasis on the techniques employed, fabrications, merits, and demerits of each technique. In the era of fluidic microstrip communication devices, versatility and stability have become key features of microfluidic devices. These fluidic devices allow advanced fabrication techniques such as 3D printing, spraying, or injecting the conductive fluid on the flexible/rigid substrate. Fluidic techniques are used either in the form of loading components, switching, or as the radiating/conducting path of a microwave component such as liquid metals. The major benefits and drawbacks of each technology are also emphasized. In this review, there is a brief discussion of the most widely used microfluidic materials, their novel fabrication/patterning methods

    Design and Measurement of a Millimeter-wave 2D Beam Switching Planar Antenna Array

    Get PDF
    A millimeter-wave 2-D beam switching microstrip patch antenna array excited by a 4x4 substrate integrated waveguide (SIW) Modified Butler Matrix is designed and experimentally evaluated in this thesis. A novel architecture is introduced for the Butler Matrix feed network to give designers a choice for phase shifter location to pursue a smaller circuit area. In addition, it enables the designer to control the BM phased outputs for achieving a set of desired 2-D beam directions, e.g., ϕ0=45°, 135°, 225°, and 315° at θ0=45°, with a passive beam switching network for a given array geometry. Full-wave simulation results show when the so designed 4x4 Butler Matrix feeds a 2x2 planar patch antenna array, 4-quadrant beam switching is achieved. To meet the goal of providing a low cost small footprint solution, the presented Modified Butler Matrix features straight SIW phase shifter using periodic apertures. The Modified Butler Matrix is fabricated on a single layer Rogers RO4350B substrate, achieving a circuit area of 222.5 mm2, which is a 54% improvement over previously published 60 GHz results. The fully-integrated antenna array system is created by development of a new SIW to planar patch antenna transition structure which maintains a total antenna frontend area of 333 mm2, just 42% of the area of the next closest SIW 2-D beam switching publication at 60 GHz. For verification of beam switching via over the air (OTA) measurements at 60 GHz, a benchtop anechoic chamber with proper transmitter and receiver antenna positioners is designed and fabricated using in-house maker laboratory resources. 2-D beam steering is proved in the intended 4 quadrants of radiation space at ϕ0=50°, 140°, 220°, and 300° and θ0=30±5° demonstrating meeting the design specifications with a very good margin. As well, for each switched beam the gain of antenna array was measured to be between 4.8 to 6 dBi at 60 GHz which is within 1dB deviation from the simulated results

    Additively Manufactured RF Components, Packaging, Modules, and Flexible Modular Phased Arrays Enabling Widespread Massively Scalable mmWave/5G Applications

    Get PDF
    The 5G era is here and with it comes many challenges, particularily facing the high frequency mmWave adoption. This is because of the cost to implement such dense networks is much greater due to the high propagation losses of signals that range from 26 GHz to 40 GHz. Therefore there needs to be a way to utilize a method of fabrication that can change with the various environments that 5G will be deployed in, be it dense urban areas or suburban sprawl. In this research, the focus is on making these RF components utilized for 5G at low cost and modular with a focus on additive manufacturing. Since additive manufacturing is a rapid prototyping technique, the technology can be quickly adjusted and altered to meet certain specifications with negligible overhead. Several areas of research will be explored. Firstly, various RF passive components such as additively manufactured antennas and couplers with a combination hybrid inkjet and 3D printing will be discussed. Passive components are critical for evaluating the process of additive manufacturing for high frequency operation. Secondly, various structures will be evaluated specifically for packaging mmWave ICs, including interconnects, smart packaging and encapsulants for use in single or multichip modules. Thirdly, various antenna fabrication techniques will be explored which enables fully integrated ICs with antennas, called System on Antenna (SoA) which utilizes both inkjet and 3D printing to combine antennas and ICs into modules. These modules, can then be built into arrays in a modular fashion, allowing for large or smaller arrays to be assembled on the fly. Finally, a method of calibrating the arrays is introduced, utilizing inkjet printed sensors. This allows the sensor to actively detect bends and deformations in the array and restore optimal antenna array performance. Built for flexible phased arrays, the sensor is designed for implementation for ubiquitous use, meaning that its can be placed on any surface, which enables widespread use of 5G technologies.Ph.D

    Compact Multilayer Filter in Empty Substrate Integrated Waveguide With Transmission Zeros

    Full text link
    © 2018 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] The empty substrate integrated waveguide (ESIW) technology is recently receiving special attention, since it preserves the many advantages of SIW circuits but provides an enhanced behavior due to avoidance of dielectric filling. Many circuits have been designed in the ESIW technology, including several filters with different performances. The next challenge is to achieve the maximum possible compactness degree for these circuits. In this paper, we present the design of a multilayer empty substrate integrated filter with the same performance as if it were manufactured in a single layer but significantly increasing its compactness and mechanical resistance.This work was supported by the Ministerio de Economia y Competitividad, Spanish Government, under Grant TEC2016-75934-C4-3-R and Grant TEC2016-75934-C4-1-R.Belenguer Martínez, Á.; Fernández-Berlanga, MD.; Ballesteros, JA.; De Dios, JJ.; Esteban González, H.; Boria Esbert, VE. (2018). Compact Multilayer Filter in Empty Substrate Integrated Waveguide With Transmission Zeros. IEEE Transactions on Microwave Theory and Techniques. 66(6):2993-3000. https://doi.org/10.1109/TMTT.2018.2823306S2993300066

    Monolithic integrated reflective transceiver in indium phosphide

    Get PDF
    The work presented in this thesis is about an InP based monolithic integrated reflective transceiver meant for use in future fiber access networks at the user site. The motivation for this research results from the users’ demands for ever-increasing bandwidth at low cost of operation, administration and maintenance. We investigated solutions to these challenges with a network concept using a dynamically reconfigurable optical network topology with a wavelength router and a colorless optical network unit. This work focuses on developing the optical part of the optical network unit, a reflective transceiver. This reflective transceiver consists of three basic components: a tunable wavelength duplexer, a photodetector and a reflective modulator. The tunable wavelength duplexer separates two wavelengths, one for the downstream and one for the upstream signals, and guides them to the photodetector and the reflective modulator. The photodetector detects the downstream data. The reflective modulator modulates the light carrier with the upstream data and reflects it back to the network. The integrated transceiver was realized bymonolithically integrating these components on a common active-passive butt-joint layer stack based on InP technology. This approach not only offers high bandwidth for both downstream data and upstream data, but also lowers the cost of the device and the network operation because of the colorless operation at the user site. The main results obtained within this work are summarized as follows: an efficient and polarization insensitive tunable wavelength duplexer was realized; a new method to fabricate a reflective SOA has been proposed and demonstrated; a high performance waveguide photodetector based on SOA layer stack was successfully fabricated; a low cost photoreceiverwhich includes an InP photodetector and a SiGe amplifier was demonstrated; aworking monolithic integrated reflective transceiver based on InP was successfully realized and demonstrated; two monolithic integrated transceivers aiming for higher bandwidth have been designed and fabricated. In addition, a novel MMI reflector has been proposed and realized with high reflectivity. This work was funded by DutchMinistry of Economic Affairs through the Freeband Project Broadband Photonics Access, the Smartmix projectMemphis and the NRC Photonics
    corecore