118 research outputs found

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Polymer-based 3-D printing of G-band metal-pipe rectangular waveguide components

    Get PDF
    The objective of this thesis is to investigate the use of low-cost polymer-based 3-D printing for G-band (140 to 220 GHz) metal-pipe rectangular waveguide (MPRWG) components. First, various preliminary designs are investigated. Then, a successful ‘trough-and-lid’ assembly is demonstrated, which mitigates against the main design challenges for split-block waveguide construction at upper-millimeter-wave frequencies (ca. 100 GHz to 300 GHz), and can be realized using low-cost 3-D printing and conventional metal plating techniques. With this assembly, inexpensive masked stereolithographic apparatus (MSLA) 3-D printers and a standard commercial copper electroplating service are used. The trough-and-lid assembly is expected to provide a standard solution for the low-cost and low loss realization of most MPRWG implementations above 100 GHz; previously, this was infeasible without the use of high-cost, state-of-the-art 3-D printing and/or custom-developed metal plating techniques. Three different component types are successfully demonstrated: (i) straight thru lines; (ii) 90° twists; and (iii) bandpass filters (BPFs). Along with frequency-domain S-parameter measurements, a detailed time-domain reflectometry analysis is also included. For the more accurate characterization of these components, the additional insertion loss due to conductor surface roughness is investigated. Finally, the integration of an MPRWG component into a millimeter-wave subsystem, which is based on the design of a radiometer front-end, is presented.Open Acces

    Development of a chipless RFID based aerospace structural health monitoring sensor system

    Get PDF
    Chipless Radio Frequency Identification (RFID) is modern wireless technology that has been earmarked as being suitable for low-cost item tagging/tracking. These devices do not require integrated circuitry or a battery and thus, are not only are cheap, but also easy to manufacture and potentially very robust. A great deal of attention is also being put on the possibility of giving these tags the ability to sense various environmental stimuli such as temperature and humidity. This work focusses on the potential use of chipless RFID as a sensor technology for aerospace Structural Health Monitoring. The project is focussed on the sensing of mechanical strain and temperature, with an emphasis placed on fabrication simplicity, so that the final sensor designs could be potentially fabricated in-situ using existing printing technologies. Within this project, a variety of novel chipless RFID strain and temperature sensors have been designed, fabricated and tested. A thorough discussion is also presented on the topic of strain sensor cross sensitivity, which places emphasis on issues like, transverse strain, dielectric constant variations and thermal swelling. Additionally, an exploration into other key technological challenges was also performed, with a focus on challenges such as: accurate and reliable stimulus detection, sensor polarization and multi-sensor support. Several key areas of future research have also been identified and outlined, with aims related to: Enhancing strain sensor fabrication simplicity, enhancing temperature sensor sensitivity and simplicity and developing a fully functional interrogation system

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Polymer-based 3-D printed 140 to 220 GHz metal waveguide thru lines, twist and filters

    Get PDF
    This paper demonstrates the current state-of-the-art in low-cost, low loss ruggedized polymer-based 3-D printed G-band (140 to 220 GHz) metal-pipe rectangular waveguide (MPRWG) components. From a unique and exhaustive up-to-date literature review, the main limitations for G-band split-block MPRWGs are identified as electromagnetic (EM) radiation leakage, assembly part alignment and manufacturing accuracy. To mitigate against leakage and misalignment, we investigate a ‘trough-and-lid’ split-block solution. This approach is successfully employed in proof-of-concept thru lines, and in the first polymer-based 3-D printed 90° twist and symmetrical diaphragm inductive iris-coupled bandpass filters (BPFs) operating above 110 GHz. An inexpensive desktop masked stereolithography apparatus 3-D printer and a commercial copper electroplating service are used. Surface roughness losses are calculated and applied to EM (re-)simulations, using two modifications of the Hemispherical model. The 7.4 mm thru line exhibits a measured average dissipative attenuation of only 12.7 dB/m, with rectangular-to-trapezoidal cross-sectional distortion being the main contributor to loss. The 90° twist exhibits commensurate measured performance to its commercial counterpart, despite the much lower manufacturing costs. A detailed time-domain reflectometry analysis of flange quality for the thru lines and 90° twists has also been included. Finally, a new systematic iris corner rounding compensation technique, to correct passband frequency down-shifting is applied to two BPFs. Here, the 175 GHz exemplar exhibits only 0.5% center frequency up-shifting. The trough-and-lid assembly is now a viable solution for new upper-mm-wave MPRWG components. With this technology becoming less expensive and more accurate, higher frequencies and/or more demanding specifications can be implemented

    Antennas and Propagation Aspects for Emerging Wireless Communication Technologies

    Get PDF
    The increasing demand for high data rate applications and the delivery of zero-latency multimedia content drives technological evolutions towards the design and implementation of next-generation broadband wireless networks. In this context, various novel technologies have been introduced, such as millimeter wave (mmWave) transmission, massive multiple input multiple output (MIMO) systems, and non-orthogonal multiple access (NOMA) schemes in order to support the vision of fifth generation (5G) wireless cellular networks. The introduction of these technologies, however, is inextricably connected with a holistic redesign of the current transceiver structures, as well as the network architecture reconfiguration. To this end, ultra-dense network deployment along with distributed massive MIMO technologies and intermediate relay nodes have been proposed, among others, in order to ensure an improved quality of services to all mobile users. In the same framework, the design and evaluation of novel antenna configurations able to support wideband applications is of utmost importance for 5G context support. Furthermore, in order to design reliable 5G systems, the channel characterization in these frequencies and in the complex propagation environments cannot be ignored because it plays a significant role. In this Special Issue, fourteen papers are published, covering various aspects of novel antenna designs for broadband applications, propagation models at mmWave bands, the deployment of NOMA techniques, radio network planning for 5G networks, and multi-beam antenna technologies for 5G wireless communications

    3-D printing quantization predistortion applied to sub-THz chained-function filters

    Get PDF
    This paper investigates physical dimension limits associated with the low-cost, polymer-based masked stereolithography apparatus (MSLA) 3-D printer, with 50 Όm pixels defining the minimum print feature size. Based on the discretization properties of our MSLA 3-D printer, multi-step quantization predistortion is introduced to correct for registration errors between the CAD drawing and slicing software. This methodology is applied to G-band 5th order metal-pipe rectangular waveguide filters, where the pixel pitch has an equivalent electrical length of 8.5° at center frequency. When compared to the reference Chebyshev filter, our chained-function filter exhibits superior S-parameter measurements, with a low insertion loss of only 0.6 dB at its center frequency of 182 GHz, having a 0.9% frequency shift, and an acceptable worst-case passband return loss of 13 dB. Moreover, with measured dimensions after the 3-D printed parts have been commercially electroplated with a 50 Όm thick layer of copper, the re-simulations are in good agreement with the S-parameter measurements. For the first time, systematic (quantization) errors associated with a pixel-based 3-D printer have been characterized and our robust predistortion methodology has been successfully demonstrated with an upper-millimeter-wave circuit. Indeed, we report the first polymer-based 3-D printed filters that operate above W-band. As pixel sizes continue to shrink, more resilient (sub-)THz filters with ever-higher frequencies of operation and more demanding specifications can be 3-D printed. Moreover, our work opens-up new opportunities for any pixel-based technology, which exhibits registration errors, with its application critically dependent on its minimum feature size

    Extrinsic Quantum Centers in Silicon for Nanophotonics and Quantum Applications

    Get PDF
    Quantenzentren in Kristallgittern spielen als sogenannte Festkörper-Qubits eine entscheidende Rolle fĂŒr die Entwicklung der zweiten Quantenrevolution. Das G-Zentrum in Silizium kann hierfĂŒr einen wesentlichen Beitrag leisten, da es sich CMOS-kompatibel und damit skalierbar herstellen lĂ€sst, es eine scharfe Nullphononenlinie im Bereich der optischen Telekommunikation besitzt und ODMR-aktiv ist. Dies macht es zu einem geeigneten Kandidaten fĂŒr die Entwicklung photonischer Mikrochips, auf denen Quantentechnologien und Lichtwellenleitung durch eine Spin-Photon-Schnittstelle miteinander verknĂŒpft werden, um somit alle Kriterien zum Aufbau eines Quantennetzwerkes zu erfĂŒllen. In der vorliegenden Arbeit werden G-Zentren durch niederenergetische und rĂ€umlich-selektive Ionen-Implantation hergestellt und mittels Photolumineszenz-Spektroskopie und Magnetresonanzmessungen auf ihre optischen und quantenphysikalischen Eigenschaften untersucht. Anhand umfangreicher temperaturabhĂ€ngiger Ensemble-Messungen in reinem Silizium werden offene Fragen zum SĂ€ttigungsverhalten, der Rekombinationsdynamik und der Verschiebung bzw. Verbreiterung der Nullphononenlinie geklĂ€rt und die ersten Zerfallszeit-Messungen des angeregten Zustandes des Defektes vorgestellt. Durch die Verwendung von SOI-Proben in Kombination mit niederenergetischer Ionen-Implantation wird weiterhin die erste, jemals in Silizium isolierte Einzelphotonenquelle hergestellt und durch zahlreiche Polarisations- und Korrelationsmessungen als solche identifiziert. Durch die Einzelphotonenmessung erfolgt zusĂ€tzlich eine erste AbschĂ€tzung der Quanteneffizienz der G-Zentren und die Messung der Lebensdauer des isolierten angeregten Zustandes. Um den Quantenzustand der G-Zentren mittels Mikrowellenfeld manipulieren und sowohl optische als auch elektronisch auslesen zu können, wird ein experimenteller Aufbau beschrieben, mit dem die magnetische Resonanz der G-Zentren in einer SOI-Probe temperaturabhĂ€ngig bis in den kryogenen Bereich detektiert werden kann. Nach den ersten manuellen Testmessungen wird der Versuchsaufbau durch neue SteuergerĂ€te und eine Automatisierung weiter optimiert, um damit umfangreiche Messungen bei T = 40K und Raumtemperatur durchzufĂŒhren. Dabei wird eine mikrowellenabhĂ€ngige Manipulation der Photolumineszenz der G-Zentren beobachtet, welche mit dem detektierten Photostrom korreliert ist. Die Manipulation der Photolumineszenz wird hauptsĂ€chlich auf eine VerĂ€nderung der LadungstrĂ€gerdichte aufgrund anderer spinabhĂ€ngiger Rekombinationszentren zurĂŒckgefĂŒhrt, welche sich an den GrenzflĂ€chen des SOI-Schichtstapels bilden. Ideen, um den Einfluss der G-Zentren durch UnterdrĂŒckung der anderen Rekombinationszentren zu erhöhen, werden diskutiert.:Bibliografische Beschreibung Referat Abstract Zusammenfassung der Dissertation Contents List of Figures List of Tables Abbreviations 1 Introduction and motivation 1.1 Demand for silicon photonics and quantum technologies 1.2 Description and aim of the project 1.3 Outline 2 Solid-state and optical properties of silicon 2.1 Crystal properties 2.1.1 Structure 2.1.2 Lattice vibrations 2.1.3 Debye-Waller factor 2.1.4 Energy bands 2.2 Defects and doping in silicon 2.2.1 Intrinsic and extrinsic point defects 2.2.2 Line, area and volume defects 2.2.3 Doping 2.3 Luminescence from silicon 2.3.1 Optical properties of bulk silicon 2.3.2 Non-linear effects in silicon 2.3.3 Dislocation loops 2.3.4 Quantum confinement effects 2.3.5 Rare-Earth (Erbium) doping 2.3.6 Light emitting defects in silicon 2.4 G centers in silicon 2.4.1 Structural properties and creation of G centers 2.4.2 Optical properties and applications of G centers 3 Solid-state quantum technologies 3.1 Ion implantation for defect engineering 3.1.1 High-energy accelerator “Lipsion” 3.1.2 100 kV Microbeam 3.2 Quantum optics 3.2.1 Properties of single photons 3.2.2 Photoluminescence and single-photon measurements 3.2.3 Applications of single-photon sources - quantum key distribution 3.3 Quantum computing 3.3.1 Basic principle 3.3.2 Photonic qubits 3.3.3 Solid-state qubits 4 Optical properties of an ensemble of G centers in silicon 4.1 Experiment description and basic properties 4.1.1 Sample fabrication 4.1.2 Optical spectroscopy 4.1.3 PL response of different defect densities 4.1.4 Photoluminescence excitation measurement 4.1.5 Saturation behavior 4.2 Temperature-dependent photoluminescence spectroscopy 4.2.1 Thermal redshift 4.2.2 ZPL broadening 4.2.3 Temperature-dependent PL intensity 4.2.4 Temperature-dependent lifetime and decay rate 4.3 Recombination dynamics 4.3.1 Spectrally selective recombination dynamics 4.3.2 Lifetime and defect density 4.3.3 Phonon-assisted recombination model 5 G centers as single-photon sources in silicon 5.1 Experimental description 5.1.1 Sample fabrication 5.1.2 Optical spectroscopy 5.2 Evidence of a single-photon source 5.2.1 Autocorrelation study 5.2.2 Photodynamics 5.2.3 PL polarization 5.3 Properties of single photons from G centers 5.3.1 ZPL shift 5.3.2 Saturation and stability 5.3.3 Lifetime of an isolated G center 5.3.4 Estimation of the quantum efficiency 6 Optical and photoelectric readout of G centers in silicon 6.1 Setup 6.1.1 Sample preparation 6.1.2 Circuit board and cryostat 6.1.3 Measuring and control devices 6.1.4 PL spectroscopy 6.2 Manual ODMR and PDMR at cryogenic temperature 6.3 Automated PDMR measurements 6.3.1 Spectrum analysis 6.3.2 Etiology 6.3.3 Voltage dependence 6.3.4 Temperature dependence 6.3.5 Laser dependence 6.3.6 Magnetic field dependence 6.4 Automated PDMR and ODMR at cryogenic temperature 6.5 Discussion 6.5.1 Microwave dielectric heating in silicon 6.5.2 Spin-dependent recombination centers in Si and Si/SiO2 interfaces 6.6 Conclusion 7 Summary and outlook Bibliography Danksagung Wissenschaftlicher Werdegang SelbststĂ€ndigkeitserklĂ€rung ErklĂ€rung fĂŒr die BibliothekQuantum centers in crystal lattices can form so-called solid-state qubits that play a crucial role for the progress of the second quantum revolution. The G center in silicon can make a significant contribution to this, since it can be fabricated in a CMOS compatible and thus scalable way, it has a sharp zero-phonon line in the optical telecommunication range, and it is ODMR active. This makes it a suitable candidate for the development of photonic microchips, where quantum technologies and optical waveguides are linked by a spin-photon interface, thus fulfilling all the criteria to build a quantum network. In the present work, G centers are fabricated by low-energy and spatially-selective ion implantation and their optical and quantum physical properties are investigated by photoluminescence spectroscopy and magnetic resonance measurements. Using extensive temperature-dependent ensemble measurements in pure silicon, open questions on saturation behavior, recombination dynamics, and zero-phonon line shift as well as broadening are clarified, and the first decay time measurements of the excited state of this defect are presented. By using SOI samples in combination with low-energy ion implantation, the first single-photon source ever isolated in silicon is further fabricated and identified as such by extensive polarization and correlation measurements. The single-photon measurement additionally provides a first estimation of the quantum efficiency of the G centers and the measurement of the lifetime of the isolated excited state. In order to manipulate the quantum state of the G centers by means of a microwave field and to enable an optical as well as an electronical readout, an experimental setup is designed and assembled that allows the temperature-dependent detection of magnetic resonances of G centers in a SOI sample down to the cryogenic range. After the first manual test measurements, the experimental setup is further optimized by new control devices and process automation to allow extensive measurements at T = 40K and room temperature. A microwave-dependent manipulation of the photoluminescence of the G centers is observed, which is correlated with the detected photocurrent. The manipulation of the photoluminescence is mainly attributed to a change in the charge carrier density due to other spin-dependent recombination centers that form at the interfaces of the SOI layer stack. Ideas to increase the influence of the G centers by suppressing the other recombination centers are discussed.:Bibliografische Beschreibung Referat Abstract Zusammenfassung der Dissertation Contents List of Figures List of Tables Abbreviations 1 Introduction and motivation 1.1 Demand for silicon photonics and quantum technologies 1.2 Description and aim of the project 1.3 Outline 2 Solid-state and optical properties of silicon 2.1 Crystal properties 2.1.1 Structure 2.1.2 Lattice vibrations 2.1.3 Debye-Waller factor 2.1.4 Energy bands 2.2 Defects and doping in silicon 2.2.1 Intrinsic and extrinsic point defects 2.2.2 Line, area and volume defects 2.2.3 Doping 2.3 Luminescence from silicon 2.3.1 Optical properties of bulk silicon 2.3.2 Non-linear effects in silicon 2.3.3 Dislocation loops 2.3.4 Quantum confinement effects 2.3.5 Rare-Earth (Erbium) doping 2.3.6 Light emitting defects in silicon 2.4 G centers in silicon 2.4.1 Structural properties and creation of G centers 2.4.2 Optical properties and applications of G centers 3 Solid-state quantum technologies 3.1 Ion implantation for defect engineering 3.1.1 High-energy accelerator “Lipsion” 3.1.2 100 kV Microbeam 3.2 Quantum optics 3.2.1 Properties of single photons 3.2.2 Photoluminescence and single-photon measurements 3.2.3 Applications of single-photon sources - quantum key distribution 3.3 Quantum computing 3.3.1 Basic principle 3.3.2 Photonic qubits 3.3.3 Solid-state qubits 4 Optical properties of an ensemble of G centers in silicon 4.1 Experiment description and basic properties 4.1.1 Sample fabrication 4.1.2 Optical spectroscopy 4.1.3 PL response of different defect densities 4.1.4 Photoluminescence excitation measurement 4.1.5 Saturation behavior 4.2 Temperature-dependent photoluminescence spectroscopy 4.2.1 Thermal redshift 4.2.2 ZPL broadening 4.2.3 Temperature-dependent PL intensity 4.2.4 Temperature-dependent lifetime and decay rate 4.3 Recombination dynamics 4.3.1 Spectrally selective recombination dynamics 4.3.2 Lifetime and defect density 4.3.3 Phonon-assisted recombination model 5 G centers as single-photon sources in silicon 5.1 Experimental description 5.1.1 Sample fabrication 5.1.2 Optical spectroscopy 5.2 Evidence of a single-photon source 5.2.1 Autocorrelation study 5.2.2 Photodynamics 5.2.3 PL polarization 5.3 Properties of single photons from G centers 5.3.1 ZPL shift 5.3.2 Saturation and stability 5.3.3 Lifetime of an isolated G center 5.3.4 Estimation of the quantum efficiency 6 Optical and photoelectric readout of G centers in silicon 6.1 Setup 6.1.1 Sample preparation 6.1.2 Circuit board and cryostat 6.1.3 Measuring and control devices 6.1.4 PL spectroscopy 6.2 Manual ODMR and PDMR at cryogenic temperature 6.3 Automated PDMR measurements 6.3.1 Spectrum analysis 6.3.2 Etiology 6.3.3 Voltage dependence 6.3.4 Temperature dependence 6.3.5 Laser dependence 6.3.6 Magnetic field dependence 6.4 Automated PDMR and ODMR at cryogenic temperature 6.5 Discussion 6.5.1 Microwave dielectric heating in silicon 6.5.2 Spin-dependent recombination centers in Si and Si/SiO2 interfaces 6.6 Conclusion 7 Summary and outlook Bibliography Danksagung Wissenschaftlicher Werdegang SelbststĂ€ndigkeitserklĂ€rung ErklĂ€rung fĂŒr die Bibliothe

    Advanced direct metal 3D printed passive components for wireless communications and satellite applications

    Get PDF
    This thesis presents the design of advanced microwave passive filters, antennas, and antenna arrays using direct metal 3D printing technology. These work all incorporate the printing technology into the RF component design process, demonstrating the potential possibilities of direct metal 3D printing in the investigation and fabrication of passive microwave components with irregular shapes but attractive features. This thesis's works involved an extensive frequency range that starts with investigating S-band filters and then extends to C-band and Ku-band filters and antennas design. It is well known that in S- and C- band radio frequency (RF) applications that miniaturization is a critical factor for RF devices besides high performances. For this reason, the first project in this thesis proposed a novel compact waveguide loaded air slots resonator for designing inline bandpass filters. As a result, the designed filters not only have a smaller size than coaxial ones but also have controllable transmission zeros with inline structures. Since the air slots resonator is loaded inside the cavity, it is difficult to fabricate by conventional methods, but accessible by 3D printing technique with appropriate self-support structures. The fabrication quality was reflected by the mechanical and RF property measurements, which first demonstrated the advantage of using 3D printing technique to fabricate components with complex structures. The second project presents a compact high-Q fan-shaped folded waveguide resonator, which is applied to successfully design one C-band filter and filtering antenna. High performance RF properties and easy-to-print structures are always considered together. Accordingly, this work proposed and validated novel slots cross negative coupling topology of the filter and novel filtering antenna theory. Also, each of the designed components has better self-supported structures that can be printed with only two pieces, which highly reduced assembly processes and errors. Furthermore, the RF properties from measurement results further demonstrated that the reliability of the metal 3D printing technology for C-band RF applications. The concepts of the third project are extended from the second project but replaces the folded waveguide resonator with a metal strong coupling resonator (MSCR). The MSCR allows for even further compact dimensions while maintaining a high Q value of over 1000. It also allows producing mixed electrical-magnetic coupling by the curving coupling metal pairs intentionally. Except for the desired RF properties, the designed filter based on the MSCR can be printed as a whole even with complex inner circuits structures. Furthermore, the MSCR was integrated with the helical antenna using the proposed theory presented in the second project. Although the helical antenna belongs to the electrical-small antenna, the designed filtering antenna still has a high transmission efficiency of more than 95% and a 6 dBi realized gain concerning its less than quarter-wavelength. In addition, the filtering antenna has five helical radiation elements and one filter prototype but was printed with only three pieces, which showed the advantages of the direct metal 3D printing technology again. The fourth and the last project introduces a Ku-band slots antenna array application based on the sine corrugated waveguide resonator. Similar to previous projects, advanced RF performances were pursued in this project, in addition to demonstrating the use of 3D printing technology to fabricate compact and specific structures. The designed antenna array achieved a higher gain, wider band, and more simple feeding networks. The mode analysis method based on the EM software CST was applied to guide the design since no related formulas were available. The designed model was printed with two pieces and was measured thoroughly. The measured surface roughness, in-band responses, and radiation patterns showed promising results for the sine corrugated waveguide and 3D printing technology in satellite applications. In general, this thesis researched and proved the reliability and advantages of direct metal 3D printing technology in designing and fabricating advanced microwave passive components below the Ku-band. It should be mentioned that the designed passive components in this thesis can be easily re-designed/re-configured and applied on the 5G wireless base station and satellite communication systems
    • 

    corecore