1,060 research outputs found

    Cycle-accurate evaluation of reconfigurable photonic networks-on-chip

    Get PDF
    There is little doubt that the most important limiting factors of the performance of next-generation Chip Multiprocessors (CMPs) will be the power efficiency and the available communication speed between cores. Photonic Networks-on-Chip (NoCs) have been suggested as a viable route to relieve the off- and on-chip interconnection bottleneck. Low-loss integrated optical waveguides can transport very high-speed data signals over longer distances as compared to on-chip electrical signaling. In addition, with the development of silicon microrings, photonic switches can be integrated to route signals in a data-transparent way. Although several photonic NoC proposals exist, their use is often limited to the communication of large data messages due to a relatively long set-up time of the photonic channels. In this work, we evaluate a reconfigurable photonic NoC in which the topology is adapted automatically (on a microsecond scale) to the evolving traffic situation by use of silicon microrings. To evaluate this system's performance, the proposed architecture has been implemented in a detailed full-system cycle-accurate simulator which is capable of generating realistic workloads and traffic patterns. In addition, a model was developed to estimate the power consumption of the full interconnection network which was compared with other photonic and electrical NoC solutions. We find that our proposed network architecture significantly lowers the average memory access latency (35% reduction) while only generating a modest increase in power consumption (20%), compared to a conventional concentrated mesh electrical signaling approach. When comparing our solution to high-speed circuit-switched photonic NoCs, long photonic channel set-up times can be tolerated which makes our approach directly applicable to current shared-memory CMPs

    Scalability of broadcast performance in wireless network-on-chip

    Get PDF
    Networks-on-Chip (NoCs) are currently the paradigm of choice to interconnect the cores of a chip multiprocessor. However, conventional NoCs may not suffice to fulfill the on-chip communication requirements of processors with hundreds or thousands of cores. The main reason is that the performance of such networks drops as the number of cores grows, especially in the presence of multicast and broadcast traffic. This not only limits the scalability of current multiprocessor architectures, but also sets a performance wall that prevents the development of architectures that generate moderate-to-high levels of multicast. In this paper, a Wireless Network-on-Chip (WNoC) where all cores share a single broadband channel is presented. Such design is conceived to provide low latency and ordered delivery for multicast/broadcast traffic, in an attempt to complement a wireline NoC that will transport the rest of communication flows. To assess the feasibility of this approach, the network performance of WNoC is analyzed as a function of the system size and the channel capacity, and then compared to that of wireline NoCs with embedded multicast support. Based on this evaluation, preliminary results on the potential performance of the proposed hybrid scheme are provided, together with guidelines for the design of MAC protocols for WNoC.Peer ReviewedPostprint (published version

    Low-power reconfigurable network architecture for on-chip photonic interconnects

    Get PDF
    Photonic Networks-On-Chip have emerged as a viable solution for interconnecting multicore computer architectures in a power-efficient manner. Current architectures focus on large messages, however, which are not compatible with the coherence traffic found on chip multiprocessor networks. In this paper, we introduce a reconfigurable optical interconnect in which the topology is adapted automatically to the evolving traffic situation. This allows a large fraction of the (short) coherence messages to use the optical links, making our technique a better match for CMP networks when compared to existing solutions. We also evaluate the performance and power efficiency of our architecture using an assumed physical implementation based on ultra-low power optical switching devices and under realistic traffic load conditions

    Crosstalk Noise Aware System For WDM-Based Optical Network on Chip

    Get PDF
    Network on chip (NoC) is presented as a promising solution to face off the growing up of the data exchange in the multiprocessor system-on-chip (MPSoC). However, the traditional NoC faces two main problems: the bandwidth and the energy consumption. To face off these problems, a new technology in MPSoC, namely, optical network-on-chip (ONoC) has been introduced which it uses the optical communication to guaranty a high performance in communication between cores. In addition, wavelength division multiplexing (WDM) is exploited in ONoC to reach a high rate of bandwidth. Nevertheless, the transparency nature of the ONoC components induce crosstalk noise to the optical signals, which it has a direct effect to the signal-to-noise ratio (SNR) then decrease the performance of the ONoC. In this paper, we proposed a new system to control these impairments in the network in order to detect and monitor crosstalk noise in WDM-based ONoC. Furthermore, the crosstalk monitoring system is a distributed hardware system designed and test with the different optical components according the various network topology used in ONoC. The register-transfer level (RTL) hardware design and implementation of this system can result in high reliability, scalability and efficiency with running time less than 20 ms

    Detection and Monitoring Intra/Inter Crosstalk in Optical Network on Chip

    Get PDF
    Multiprocessor system-on-chip (MPSoC) has become an attractive solution for improving the performance of single chip in objective to satisfy the performance growing exponentially of the computer applications as multimedia applications. However, the communication between the different processors’ cores presents the first challenge front the high performance of MPSoC. Besides, Network on Chip (NoC) is among the most prominent solution for handling the on-chip communication. Besides, NoC potential limited by physical limitation, power consumption, latency and bandwidth in the both case: increasing data exchange or scalability of Multicores. Optical communication offers a wider bandwidth and lower power consumption, based on, a new technology named Optical Network-on-Chip (ONoC) has been introduced in MPSoC. However, ONoC components induce the crosstalk noise in the network on both forms intra/inter crosstalk. This serious problem deteriorates the quality of signals and degrades network performance. As a result, detection and monitoring the impairments becoming a challenge to keep the performance in the ONoC. In this article, we propose a new system to detect and monitor the crosstalk noise in ONoC. Particularly, we present an analytic model of intra/inter crosstalk at the optical devices. Then, we evaluate these impairments in objective to present the motivation to detect and monitor crosstalk in ONoC, in which our system has the capability to detect, to localize, and to monitor the crosstalk noise in the whole network. This system offers high reliability, scalability and efficiency with time running time less than 20 ms

    Simulation Of Multi-core Systems And Interconnections And Evaluation Of Fat-Mesh Networks

    Get PDF
    Simulators are very important in computer architecture research as they enable the exploration of new architectures to obtain detailed performance evaluation without building costly physical hardware. Simulation is even more critical to study future many-core architectures as it provides the opportunity to assess currently non-existing computer systems. In this thesis, a multiprocessor simulator is presented based on a cycle accurate architecture simulator called SESC. The shared L2 cache system is extended into a distributed shared cache (DSC) with a directory-based cache coherency protocol. A mesh network module is extended and integrated into SESC to replace the bus for scalable inter-processor communication. While these efforts complete an extended multiprocessor simulation infrastructure, two interconnection enhancements are proposed and evaluated. A novel non-uniform fat-mesh network structure similar to the idea of fat-tree is proposed. This non-uniform mesh network takes advantage of the average traffic pattern, typically all-to-all in DSC, to dedicate additional links for connections with heavy traffic (e.g., near the center) and fewer links for lighter traffic (e.g., near the periphery). Two fat-mesh schemes are implemented based on different routing algorithms. Analytical fat-mesh models are constructed by presenting the expressions for the traffic requirements of personalized all-to-all traffic. Performance improvements over the uniform mesh are demonstrated in the results from the simulator. A hybrid network consisting of one packet switching plane and multiple circuit switching planes is constructed as the second enhancement. The circuit switching planes provide fast paths between neighbors with heavy communication traffic. A compiler technique that abstracts the symbolic expressions of benchmarks' communication patterns can be used to help facilitate the circuit establishment
    corecore